This research will develop enzymes as catalysts for the synthesis of carbohydrates and derivatives. It will: . Use aldolases and related enzymes -- particularly fructose-1,6- diphosphate aldolase, fuculose-1-phosphate aldolase, rhamnulose-1-phosphate aldolase and transketolase -- to make monosaccharides. . Synthesize the nucleoside phosphate sugars required for Leloir-pathway syntheses. . Continue to develop glycosyl transferases as catalysts for synthesis of oligosaccharides and polysaccharides via the Leloir pathway by practical procedures. . Use potato phosphorylase to prepare amylose conjugates of proteins and other molecules. . Develop strategies and techniques for using the products of enzyme- catalyzed syntheses of carbohydrates by preparing natural products and analogs of them: L-heptose, lincosamine, glycosidase inhibitors, neoglycoproteins, analogs of glycolipids. . Provide reagents and non-enzymatic reactions needed to support these efforts in enzyme-catalyzed synthesis.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Bio-Organic and Natural Products Chemistry Study Section (BNP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Schools of Arts and Sciences
United States
Zip Code
Mack, Eric T; Snyder, Phillip W; Perez-Castillejos, Raquel et al. (2012) Dependence of avidity on linker length for a bivalent ligand-bivalent receptor model system. J Am Chem Soc 134:333-45
Mirica, Katherine A; Lockett, Matthew R; Snyder, Phillip W et al. (2012) Selective precipitation and purification of monovalent proteins using oligovalent ligands and ammonium sulfate. Bioconjug Chem 23:293-9
Mecinovic, Jasmin; Snyder, Phillip W; Mirica, Katherine A et al. (2011) Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the ""hydrophobic wall"" of carbonic anhydrase. J Am Chem Soc 133:14017-26
Snyder, Phillip W; Mecinovic, Jasmin; Moustakas, Demetri T et al. (2011) Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc Natl Acad Sci U S A 108:17889-94
Mack, Eric T; Snyder, Phillip W; Perez-Castillejos, Raquel et al. (2011) Using covalent dimers of human carbonic anhydrase II to model bivalency in immunoglobulins. J Am Chem Soc 133:11701-15
Bilgi├žer, Ba?ar; Thomas 3rd, Samuel W; Shaw, Bryan F et al. (2009) A non-chromatographic method for the purification of a bivalently active monoclonal IgG antibody from biological fluids. J Am Chem Soc 131:9361-7
Krishnamurthy, Vijay M; Kaufman, George K; Urbach, Adam R et al. (2008) Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem Rev 108:946-1051
Mack, Eric T; Perez-Castillejos, Raquel; Suo, Zhigang et al. (2008) Exact analysis of ligand-induced dimerization of monomeric receptors. Anal Chem 80:5550-5
Semetey, Vincent; Moustakas, Demetri; Whitesides, George M (2006) Synthesis and conformational study of water-soluble, rigid, rodlike oligopiperidines. Angew Chem Int Ed Engl 45:588-91
Krishnamurthy, Vijay M; Quinton, Lee J; Estroff, Lara A et al. (2006) Promotion of opsonization by antibodies and phagocytosis of Gram-positive bacteria by a bifunctional polyacrylamide. Biomaterials 27:3663-74

Showing the most recent 10 out of 63 publications