Wu, Mack H; Yuan, Sarah Y; Granger, Harris J (2005) The protein kinase MEK1/2 mediate vascular endothelial growth factor- and histamine-induced hyperpermeability in porcine coronary venules. J Physiol 563:95-104
|
Guo, Mingzhang; Wu, Mack H; Granger, Harris J et al. (2005) Focal adhesion kinase in neutrophil-induced microvascular hyperpermeability. Microcirculation 12:223-32
|
Guo, Mingzhang; Wu, Mack H; Granger, Harris J et al. (2004) Transference of recombinant VE-cadherin cytoplasmic domain alters endothelial junctional integrity and porcine microvascular permeability. J Physiol 554:78-88
|
Hayes, H; Kossmann, E; Wilson, E et al. (2003) Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1:101-19
|
Bridenbaugh, Eric A; Gashev, Anatoliy A; Zawieja, David C (2003) Lymphatic muscle: a review of contractile function. Lymphat Res Biol 1:147-58
|
Wu, Mack H; Guo, Mingzhang; Yuan, Sarah Y et al. (2003) Focal adhesion kinase mediates porcine venular hyperpermeability elicited by vascular endothelial growth factor. J Physiol 552:691-9
|
Gashev, Anatoliy A; Davis, Michael J; Zawieja, David C (2002) Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J Physiol 540:1023-37
|
Gashev, A A; Orlov, R S; Zawieja, D C (2001) [Contractions of the lymphangion under low filling conditions and the absence of stretching stimuli. The possibility of the sucking effect] Ross Fiziol Zh Im I M Sechenova 87:97-109
|
Wu, M H; Ustinova, E; Granger, H J (2001) Integrin binding to fibronectin and vitronectin maintains the barrier function of isolated porcine coronary venules. J Physiol 532:785-91
|
Wu, H M; Yuan, Y; Zawieja, D C et al. (1999) Role of phospholipase C, protein kinase C, and calcium in VEGF-induced venular hyperpermeability. Am J Physiol 276:H535-42
|
Showing the most recent 10 out of 49 publications