The development of the vertebrate nervous system requires switching of polymorphic ATP-dependent chromatin remodeling complexes from a neural progenitor complex (npBAF) to a neuron-specific complex (nBAF) at mitotic exit. This switch is in part directed by two microRNAs, miR-124 and miR-9, which when expressed in fibroblasts can convert them into functional neurons. Recent exome sequencing studies have found frequent mutations of BAF complex subunits in non-syndromic mental retardation, microcephally, schizophrenia and less frequent BAF complex mutations in sporadic autism and sporadic ALS. The apparently genetically dominant nature of these mutations is consistent with the instructive role of subunit switching during neurogenesis and suggests that these chromatin regulators may have rate-limiting functions. Relatively little is known of the underlying mechanisms directing subunit switching, or how subunit switching relates to other more well-defined programs of neural development. Also, the mechanisms underlying the contribution of subunit mutations to a diverse range of neurologic diseases in humans are unknown. Indeed most of the mutations are in subunits not required for conventional activities such as nucleosome remodeling. Our preliminary data suggest that repression of three progenitor subunits and their substitution with neuron-specific subunits leads to mitotic exit of neural progenitors (NPGs) and functional differentiation. We will test this hypothesis using genetic approaches and define the genetic circuitry involved in repression of the npBAF subunits and the activation of the nBAF subunits. We will also define the proteins that bind to the neuron- specific surfaces of the complexes that mediate their role in dendritic morphogenesis, dendritic targeting and neural fate determination. Using chromatin immunoprecipitation and sequencing we will define the genome- wide consequences, which result from the normal exchange of three subunits within these 2 mega dalton chromatin remodeling complexes. Our studies and those of others indicate that an important function of BAF complexes is to oppose Polycomb complexes; however the mechanisms underlying this opposition are not understood. Thus, we will use a method recently devised in our lab to understand the underlying mechanism of BAF-Polycomb opposition. At the conclusion of our studies we hope to have an understanding of the fundamental genetic circuitry and mechanisms critical for this epigenetic switch and to gain insight into the roles of polymorphic BAF complexes in diverse human neurologic diseases.

Public Health Relevance

Recent genetic studies have found that individuals with different neurologic diseases frequently have mutations in chromatin regulatory complexes. These complexes control the way that DNA (our genetic material) is packaged into cells and yet made available to regulatory mechanisms. Specific chromatin regulatory complexes are found only in neurons. Directing the formation of these neuron-specific complexes in human skin cells can convert them to functional neurons opening new avenues for disease modeling, drug testing and perhaps replacement of damaged neurons. We will study how these complexes function in normal brain development so that we might understand how they malfunction in mental retardation, schizophrenia, autism and a growing list of neurologic diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
4R37NS046789-15
Application #
9513200
Study Section
Neurogenesis and Cell Fate Study Section (NCF)
Program Officer
Riddle, Robert D
Project Start
2003-07-16
Project End
2020-03-31
Budget Start
2017-07-01
Budget End
2018-03-31
Support Year
15
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Stanford University
Department
Pathology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Stanton, Benjamin Z; Chory, Emma J; Crabtree, Gerald R (2018) Chemically induced proximity in biology and medicine. Science 359:
Koh, Andrew S; Miller, Erik L; Buenrostro, Jason D et al. (2018) Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol 19:162-172
Hodges, H Courtney; Stanton, Benjamin Z; Cermakova, Katerina et al. (2018) Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat Struct Mol Biol 25:61-72
Miller, Erik L; Hargreaves, Diana C; Kadoch, Cigall et al. (2017) TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat Struct Mol Biol 24:344-352
Kadoch, Cigall; Williams, Robert T; Calarco, Joseph P et al. (2017) Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat Genet 49:213-222
Stanton, Benjamin Z; Hodges, Courtney; Calarco, Joseph P et al. (2017) Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat Genet 49:282-288
Stanton, Benjamin Z; Hodges, Courtney; Crabtree, Gerald R et al. (2017) A General Non-Radioactive ATPase Assay for Chromatin Remodeling Complexes. Curr Protoc Chem Biol 9:1-10
Hodges, Courtney; Kirkland, Jacob G; Crabtree, Gerald R (2016) The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. Cold Spring Harb Perspect Med 6:
Son, Esther Y; Crabtree, Gerald R (2014) The role of BAF (mSWI/SNF) complexes in mammalian neural development. Am J Med Genet C Semin Med Genet 166C:333-49
Tang, Jiong; Yoo, Andrew S; Crabtree, Gerald R (2013) Reprogramming human fibroblasts to neurons by recapitulating an essential microRNA-chromatin switch. Curr Opin Genet Dev 23:591-8

Showing the most recent 10 out of 22 publications