This STTR-AT-NIAID seeks to develop an integrated nucleic acid system based on research done by Catherine Klapperich's laboratory at Boston University. The BU lab-on-a-chip includes a micro solid phase extraction (
This Phase I STTR-AT-NIAID project seeks proof-of-concept project will focus on the most abundant sexually transmitted disease (STD) pathogens: Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG). The scientific literature clearly shows that molecular testing is the most sensitive means of detecting CT and NG and the molecular CT/NG high throughput screening market is currently valued at over $300M/year. Moreover, CDC urges STD clinics to test patients with POC tests if health care workers suspect these patients are unlikely to return to the STD clinic to learn the results of the test. Unfortunately, there are no point-of-care (POC) CT NG molecular tests, and existing POC molecular testing systems like the GeneXpert are too costly for use in STD clinics. This proposed project would seek to remedy to this short coming. We propose to develop a low-cost POC molecular diagnostic system using a design developed by Dr. Catherine Klapperich's laboratory at Boston University (BU). Although the current BU disposable can perform our proprietary isothermal amplification reactions, it does not allow for low cost, instrument-free detection of amplification products;i.e., a fluorescence microscope can be used to detect product formation but this is not a commercially viable option. The device we envisage for Phase I will incorporate a lateral flow strip as a means of detecting the presence or absence of nucleic acid amplification products by simple visual inspection. BioHelix has experience in developing molecular tests using lateral flow based detection.
Linnes, Jacqueline C; Fan, Andy; Rodriguez, Natalia M et al. (2014) Paper-based molecular diagnostic for Chlamydia trachomatis. RSC Adv 4:42245-42251 |