One of the challenges of research in infectious diseases is to find ways to use the increasing knowledge of the mechanisms underlying disease transformation and progression to develop novel therapeutic strategies for diseases such as increasing menace of bacterial infections. Targeting specific RNA, such as rRNA which are involved in proliferation and survival of bacteria is a promising approach. The world is rapidly heading towards a pre-1940's scenario when it comes to fighting infectious disease. Antimicrobial resistance is a growing problem on a global scale, greatly hampering our abilities to quell worldwide epidemics such as tuberculosis and malaria, as well as the simple staphylococcus infection. Unless innovative strategies are developed to produce robust and effective new classes of antibiotics, health care costs will continue to climb and we will completely lose our ability to combat even the most common infection. Nucleic acids are avenues for drug design, both as therapeutics and as targets. Here we propose to establish new methods for identifying antibiotic ribosome targets and lead compounds. We are developing fast and low cost methods to screen sequence-specific small molecules for novel anti-ribosomal activities. We will construct sequence-specific ribosomal targeting oligomers as antibacterials. Complexes between ribosomal components will be exploited as targets for small molecule drug libraries that- inactivate the ribosome, stopping bacterial protein synthesis and causing bacterial death. NUBADs unique experimental approaches and technologies will allow us to target ribosomal regions not previously explored for susceptibility against anti-bacterial agents. This work addresses an important world health issue, antimicrobial resistance, and presents creative steps towards a novel solution to this problem. The work proposed here, a multidisciplinary effort encompassing solid-phase organic synthesis, RNA targeted screening and antibacterial studies, describes the development of sequence-specific cell permeable binders of rRNA as antibacterial therapeutics. The success of the proposed work would be a significant addition to currently available ribosome-specific approaches in antibacterial therapy. We propose using a small rRNA target sequences to design conjugates that can be employed to inhibit bacterial growth, opening possibilities for developing sequence-specific RNA targeted therapeutics.

Public Health Relevance

Antimicrobial resistance occurs when microorganisms (often infectious bacteria, viruses, and certain parasites) are no longer sensitive to drugs that were previously used to treat them;this is of global concern because it hampers our ability to control infectious disease and increases the costs of health care. In order to combat this world-wide problem, innovative strategies for antibiotic drug design must be implemented. The proposed research describes the design, synthesis, and characterization of novel oligomeric conjugates and their validation as new antibacterials. A targeted library of molecules that can specifically target certain regions of bacterial ribosome and impair their cellular processes, will be developed for the study.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Small Business Technology Transfer (STTR) Grants - Phase I (R41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IMST-L (11))
Program Officer
Xu, Zuoyu
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Nubad, LLC
United States
Zip Code
Bhaduri, Sayantan; Ranjan, Nihar; Arya, Dev P (2018) An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 14:1051-1086
Thamban Chandrika, Nishad; Shrestha, Sanjib K; Ranjan, Nihar et al. (2018) New Application of Neomycin B-Bisbenzimidazole Hybrids as Antifungal Agents. ACS Infect Dis 4:196-207
Watkins, Derrick; Gong, Changjun; Kellish, Patrick et al. (2017) Probing A-form DNA: A fluorescent aminosugar probe and dual recognition by anthraquinone-neomycin conjugates. Bioorg Med Chem 25:1309-1319
Kamphan, Anothai; Gong, Changjun; Maiti, Krishnagopal et al. (2017) Utilization of chromic polydiacetylene assemblies as a platform to probe specific binding between drug and RNA. RSC Adv 7:41435-41443
Degtyareva, Natalya N; Gong, Changjun; Story, Sandra et al. (2017) Antimicrobial Activity, AME Resistance, and A-Site Binding Studies of Anthraquinone-Neomycin Conjugates. ACS Infect Dis 3:206-215
Gómez Ramos, Lizzette M; Degtyareva, Natalya N; Kovacs, Nicholas A et al. (2017) Eukaryotic Ribosomal Expansion Segments as Antimicrobial Targets. Biochemistry 56:5288-5299
Ranjan, Nihar; Arya, Dev P (2016) Linker dependent intercalation of bisbenzimidazole-aminosugars in an RNA duplex; selectivity in RNA vs. DNA binding. Bioorg Med Chem Lett 26:5989-5994
Kumar, Sunil; Spano, Meredith Newby; Arya, Dev P (2015) Influence of linker length in shape recognition of B* DNA by dimeric aminoglycosides. Bioorg Med Chem 23:3105-9