MicroFlex Technology for Early Detection of Lung Cancer Project Summary MicroFlex technology will provide unprecedented flexibility and controllability for bronchoscopes, enabling minimally invasive bronchoscopy to reach previously inaccessible peripheral bronchi and provide direct visualization and tool manipulation capabilities for diagnostic and therapeutic procedures. MicroFlex technology combines innovations in actuation, sensing, control and assembly to produce an ultra-slim digitally controlled bronchoscope more flexible and controllable than currently possible. This technology promises to improve detection, for example of early-stage lesions, and provide more accurate diagnoses to improve cure rates for lung cancer and other lung diseases. This project will refine technology proven in the Phase I study to design, fabricate and functionally test novel 1mm diameter actively-guided MicroFlex Tool prototypes for bronchoscopy procedures. A lung-specific MicroFlex device will be developed, built and tested in the laboratory for force and motion capabilities, a control manipulative and associated control electronics and software will be developed, and pulmonologists will test the integrated system in-vivo in animals for function and usability. Since MicroFlex tools are controlled by temperature change in internal actuators, thermal effects of contacting bronchial epithelial tissue will be studied for thermal tissue damage and validation of thermal control models. Effectiveness of a prototype MicroFlex device including a Guide Catheter and MicroFlex Tool will be evaluated in accessing peripheral sites down to a 1mm bronchiole diameter, visualizing tissue, placing markers and performing tissue sampling. MicroFlex technology, fabrication processes and prototypes will be refined by integrating input from experienced bronchoscopists, engineers with expertise in medical product design, and prospective Phase III manufacturing partners and suppliers of complementary technology. Potential Phase III manufacturing partners will be identified and utilized for Phase II prototype components, where possible, to accelerate the commercialization process.

Public Health Relevance

MicroFlex Technology for Early Detection of Lung Cancer Project Narrative Lung cancer is the leading cause of cancer-related deaths in the United States, and despite advances in treatment the prognosis remains poor with a less than 15% five year survival rate, due to the difficulty of early stage detection and diagnosis. Bronchoscopy is used to diagnose various lung diseases, but current bronchoscopes are too large and too limited in flexibility and control to reach most of the peripheral lung. MicroFlex technology enables a 1mm diameter, ultra-flexible, actively-guided, digitally-controlled bronchoscope that can access nearly all locations in the lung to about the 15th bronchial branch. This bronchoscope is compatible with state of the art electromagnetic navigation, and provides direct visualization and dexterous MicroFlex tools for accurate tissue sampling and therapeutic agent delivery in the airways and pleural space.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Small Business Technology Transfer (STTR) Grants - Phase II (R42)
Project #
2R42HL083331-03A2
Application #
8061044
Study Section
Special Emphasis Panel (ZRG1-SSMI-Q (10))
Program Officer
Croxton, Thomas
Project Start
2005-09-19
Project End
2014-06-30
Budget Start
2011-07-01
Budget End
2013-06-30
Support Year
3
Fiscal Year
2011
Total Cost
$685,252
Indirect Cost
Name
Quest Product Development Corporation
Department
Type
DUNS #
958218406
City
Arvada
State
CO
Country
United States
Zip Code
80004