This Advanced Technology proposal is in response to NIAID's recently issued Notice of High-Priority Influenza Research Areas [NOT-AI-05-013]. In order to provide health officials with the tools required to efficiently combat a pandemic strain of influenza, it is essential that rapid and cost-effective methods for vaccine production be developed. Viral expression vectors offer a promising strategy for production of vaccines based on antigenic proteins such as hemagglutinin (HA). The proposed work is in support of efforts to develop alternate methods for vaccine production. Specifically, the proposed work centers on the development of a virus and HA quantification system that would significantly improve process control and reduce production time and costs, thereby enhancing vaccine production capabilities. Objective 1. One goal of the proposed research is to develop an innovative compact dual channel virus counter (DCVC) and assay for commercial application to viral expression vector systems. The hypothesis that a count of """"""""intact"""""""" viruses is representative of """"""""active"""""""" viruses will be rigorously tested. The short-term focus will be on the baculovirus expression vector system (BEVS) developed by Protein Sciences Corporation (PSC) for the generation of influenza vaccine. However, the DCVC would be equally applicable to other vector systems, such as the GenVec's adenovector technology currently being developed for production of malaria and HIV vaccines. Objective 2. The second goal is to develop an assay, in conjunction with the DCVC, which will provide rapid quantification of HA generated during the BEVS vaccine production process. The hypothesis to be tested is that the DCVC can be used to directly quantify HA on cell surfaces and that value is correlated with levels isolated from cell paste. Currently, PSC evaluates cell culture harvest of HA using an indirect method based on cell viability, which is correlated with HA production. Direct and rapid quantification of HA on the host cell surface during would greatly enhance process control for the baculovirus expression system and would result in significant reduction in manufacturing cost for vaccines. Both objectives for the monitoring system will require FDA approval for application to vaccine production. ? ? The proposed instrument and assays would aid in streamlining influenza vaccine production. In the event of an influenza pandemic, rapid vaccine production will play a key role in minimizing loss of life. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
5R43AI068270-02
Application #
7253290
Study Section
Special Emphasis Panel (ZRG1-IMM-K (12))
Program Officer
Cho, David
Project Start
2006-07-01
Project End
2008-06-30
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
2
Fiscal Year
2007
Total Cost
$422,582
Indirect Cost
Name
Indevr, Inc.
Department
Type
DUNS #
132347787
City
Boulder
State
CO
Country
United States
Zip Code
80301