The goal of this project is to develop a liquid crystal-based sensor that can detect and measure nitric oxide in exhaled breath. The sensor technology is based on a broadly applicable detection platform that exploits the sensitivity of liquid crystals (LCs) to the nanoscopic changes in the structure of surfaces. Many attributes of this LC technology suggest that it offers exciting potential for clinical applications. It can be used to fabricate low cost, highly specific sensor elements that analyze chemicals in real time (response in ~ 10 seconds), are highly sensitive (can detect 1 ppb or less in vapor phase), provide a wide dynamic range (4 orders of magnitude), offer format flexibility, and are easily customized to detect selected compounds. Because the technology does not require expensive or complex instrumentation, or highly skilled personnel to operate the equipment, it is ideally suited as a cost-effective and reliable approach for breath monitoring. The outcome of this Phase I proposal will be a sensor element that can detect and measure ppb levels of exhaled nitric oxide. The LC-based sensor elements are small (<1cm in size) and will be integrated with electronics to analyze and report analyte concentrations. Our intended product will display a readout of the collected data to the user. Such a product will enable self- monitoring by asthmatics and play a key role in disease management.

Public Health Relevance

The goal of this project is to develop a liquid crystal-based sensor that can detect and measure nitric oxide in exhaled breath. The sensor technology is based on a broadly applicable detection platform that exploits the sensitivity of liquid crystals (LCs) to the nanoscopic changes in the structure of surfaces. Many attributes of this LC technology suggest that it offers exciting potential for clinical applications. It can be used to fabricate low cost, highly specific sensor elements that analyze chemicals in real time (response in ~ 10 seconds), are highly sensitive (can detect 1 ppb or less in vapor phase), provide a wide dynamic range (4 orders of magnitude), offer format flexibility, and are easily customized to detect selected compounds. Because the technology does not require expensive or complex instrumentation, or highly skilled personnel to operate the equipment, it is ideally suited as a cost-effective and reliable approach for breath monitoring. The outcome of this Phase I proposal will be a sensor element that can detect and measure ppb levels of exhaled nitric oxide. The LC-based sensor elements are small (<1cm in size) and will be integrated with electronics to analyze and report analyte concentrations. Our intended product will display a readout of the collected data to the user. Such a product will enable self- monitoring by asthmatics and play a key role in disease management.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43HL095167-01
Application #
7600280
Study Section
Special Emphasis Panel (ZRG1-RES-E (10))
Program Officer
Smith, Robert A
Project Start
2009-03-01
Project End
2011-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
1
Fiscal Year
2009
Total Cost
$199,952
Indirect Cost
Name
Platypus Technologies, LLC
Department
Type
DUNS #
118040364
City
Madison
State
WI
Country
United States
Zip Code
53711
Floyd, J S; Sitlani, C M; Avery, C L et al. (2018) Large-scale pharmacogenomic study of sulfonylureas and the QT, JT and QRS intervals: CHARGE Pharmacogenomics Working Group. Pharmacogenomics J 18:127-135
Hastert, T A; de Oliveira Otto, M C; Lê-Scherban, F et al. (2018) Association of plasma phospholipid polyunsaturated and trans fatty acids with body mass index: results from the Multi-Ethnic Study of Atherosclerosis. Int J Obes (Lond) 42:433-440
Talluri, Rajesh; Shete, Sanjay (2018) An approach to estimate bidirectional mediation effects with application to body mass index and fasting glucose. Ann Hum Genet 82:396-406
Hajek, Catherine; Guo, Xiuqing; Yao, Jie et al. (2018) Coronary Heart Disease Genetic Risk Score Predicts Cardiovascular Disease Risk in Men, Not Women. Circ Genom Precis Med 11:e002324
Mortensen, Martin Bødtker; Falk, Erling; Li, Dong et al. (2018) Statin Trials, Cardiovascular Events, and Coronary Artery Calcification: Implications for a Trial-Based Approach to Statin Therapy in MESA. JACC Cardiovasc Imaging 11:221-230
Vella, Chantal A; Cushman, Mary; Van Hollebeke, Rachel B et al. (2018) Associations of Abdominal Muscle Area and Radiodensity with Adiponectin and Leptin: The Multiethnic Study of Atherosclerosis. Obesity (Silver Spring) 26:1234-1241
Kulminski, Alexander M; Huang, Jian; Loika, Yury et al. (2018) Strong impact of natural-selection-free heterogeneity in genetics of age-related phenotypes. Aging (Albany NY) 10:492-514
Marques, Mateus D; Nauffal, Victor; Ambale-Venkatesh, Bharath et al. (2018) Association Between Inflammatory Markers and Myocardial Fibrosis. Hypertension 72:902-908
Cainzos-Achirica, Miguel; Miedema, Michael D; McEvoy, John W et al. (2018) The prognostic value of high sensitivity C-reactive protein in a multi-ethnic population after >10?years of follow-up: The Multi-Ethnic Study of Atherosclerosis (MESA). Int J Cardiol 264:158-164
Madahar, Purnema; Duprez, Daniel A; Podolanczuk, Anna J et al. (2018) Collagen biomarkers and subclinical interstitial lung disease: The Multi-Ethnic Study of Atherosclerosis. Respir Med 140:108-114

Showing the most recent 10 out of 369 publications