Skin diseases resulting from occupational accidents are the most common non-trauma-related occupational illness. According to the National Institute for Occupational Safety and Health, about 45,000 occupational illnesses in 1999 were skin diseases. Despite the protective chemical clothing (PCC) normally used to prevent skin contact with toxic chemicals, thousands of workers each year suffer from irritant contact dermatitis. To prevent injuries by warning workers before toxic chemicals break through PCC, a fast-responding chemical warning system is required. Development of a simple, wearable, low-cost (ideally disposable) microsensing distributed sensor system to warn workers before acids or other chemicals work their way through PCC will significantly benefit occupational safety. Physical Optics Corporation (POC) proposes to design and develop a new wearable Polymer Web (POLYWEB) sensing system based on a flexible polymer waveguide web (PWW) and an interrogation module (IM). The PWW consists of a large number of acid sensitive polymer optical waveguides forming a network to monitor all areas of PCC. This optical network will detect chemical penetration even in hard to observe/inspect areas of PCC. Because the IM breaks up the spectrum of its broadband light source, it can independently monitor diverse parts of the PCC. The system warns a worker in the event of impending chemical breakthrough, preventing skin injury. In addition to individual PCC hazard warning, POLYWEB commercial applications will include failure notification in large-surface systems for containment of hazardous materials, and monitoring in the biotechnology industry. In Phase I POC will demonstrate the feasibility of the proposed system by fabricating and testing a scaled-down prototype that will demonstrate detection and quantification of a reduced number of chemical compounds. The number of sensing elements/waveguides and the number of chemicals to be detected will be scaled up in an optimized Phase II prototype. The POLYWEB sensing system will respond in real time to a breach of toxic chemicals through protective clothing used in the workplace, to prevent direct contact with a worker's skin. The proposed system will significantly reduce skin diseases resulted from occupational accidents, estimated by the National Institute for Occupational Safety and Health to be about 50,000. ? ? ? ?