Respiratory disease remains the primary cause of morbidity and mortality worldwide due to infectious disease such as community acquired respiratory tract infections (RTIs). Beta-lactam or macrolide antibiotics are currently, a first line of treatment for most RTIs, however, a considerable number of pathogens are developing resistance to these current treatments. A primary resistant mechanism of bacteria towards macrolide/ketolide antibiotics is through target modification (rRNA methylation) whereby 5-O-sugar substituent (desosamine) plays a critical role. Under Phase I, unprecedented macrolide medicinal chemistry was successfully developed that enabled the synthesis of novel 5-O-sugar modified ketolide derivatives that displayed excellent activity against macrolide-resistant bacteria.
The specific aims of this Phase II proposal are to continue our progress toward identifying a preclinical drug candidate through a series of chemistry lead optimization experiments. The continued medicinal chemistry efforts to improve in vitro and in vivo antibacterial activity will not only be guided by in-house minimum inhibitory concentration (MIC ) determinations (against primary and secondary panels) and in vivo oral efficacy experiments using relevant disease infection models, but in addition, will be guided by computer simulated ligand-receptor docking experiments utilizing computer aided molecular design (CAMD), thus allowing for rational based glycodesigri of our antibacterial analogues. The lead compounds will be further evaluated by obtaining important MIC50/90 data against relevant pathogens (Streptococcus, Haemophilus, and Staphylococcus) and by determining important animal-plasma and -lung pharmacokinetic parameters. Phase II funding will also support studies to determine resistance development and the potential for cross-resistance between our lead compounds and other leading macrolides/ketolides, an important criteria for assessing a compound's future marketability. Finally, preliminary safety will be assessed of our most promising leads by performing mammalian cell cytotoxicity assays and by determining acute oral toxicity in rodents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
5R44AI058395-03
Application #
7072224
Study Section
Special Emphasis Panel (ZRG1-BCMB-L (11))
Program Officer
Peters, Kent
Project Start
2004-04-01
Project End
2008-05-31
Budget Start
2006-06-01
Budget End
2008-05-31
Support Year
3
Fiscal Year
2006
Total Cost
$578,386
Indirect Cost
Name
Optimer Pharmaceuticals, Inc.
Department
Type
DUNS #
613866735
City
San Diego
State
CA
Country
United States
Zip Code
92121