Kineta has discovered a novel class of broad spectrum small molecule antivirals that function through a host directed mechanism. These compounds have demonstrated an innovative mechanism of action and target several high priority pathogens that are commercially valuable. The lead chromenone-based candidates have potency in the nM range, inhibit multiple viruses including influenza, coronavirus, West Nile, ebola, and dengue virus in vitro and in animal models, have an attractive pharmacologic profile, and are well tolerated in vivo. In this application, we will perform lead optimization and preclinical development of the lead series. The major milestone of the project is to select one or more nominated drug candidates for formal IND-enabling development towards an oral therapeutic for broad respiratory viral infections. Drug treatment to stimulate the host innate immune response is increasingly appreciated as a strategy for therapeutic intervention and has the potential to redefine the paradigm of antiviral drug development. The need for effective antivirals is great, and our approach to stimulate innate immunity in the presence of diverse viral countermeasures has yielded promising leads that are effective against a broad range of RNA and DNA viruses. We have assembled a highly qualified development team that includes the Kineta scientists responsible for the antiviral discovery work and Prof Michael Gale, Jr. of the University of Washington, an expert in innate immunity and the antiviral response.

Public Health Relevance

We have utilized a unique drug discovery strategy to identify potential new antiviral drugs that work by activating a faster, more potent immune response to fight off virus infection. Our goal is to develop lead candidates as oral antiviral drugs for a varety of viruses, including influenza virus, RSV, coronaviruses, and flaviviruses. The lead drugs have shown broad spectrum activity and in vivo efficacy against broad respiratory viruses. The confirmed drug mechanism of action is an innate immune response and they are predicted to be more effective and less prone viral resistance than conventional direct acting therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
1R44AI115824-01A1
Application #
9043719
Study Section
Special Emphasis Panel (ZRG1-IMST-L (11)B)
Program Officer
Davis, Mindy I
Project Start
2016-06-22
Project End
2018-05-31
Budget Start
2016-06-22
Budget End
2017-05-31
Support Year
1
Fiscal Year
2016
Total Cost
$714,642
Indirect Cost
Name
Kineta, Inc.
Department
Type
DUNS #
809832558
City
Seattle
State
WA
Country
United States
Zip Code
98109