Preserving genomic integrity is essential in order to suppress cancer, neurodegeneration, aging and other diseases. At odds with genomic preservation is DNA damage, which can drive mutations, sequence rearrangements and cellular toxicity. DNA damage is unavoidable, as DNA damaging agents are present in our environment and in our cells. To counteract the deleterious effects of DNA damage, we have evolved sophisticated DNA repair systems. It is now known that every major DNA repair pathway suppresses cancer. Furthermore, since cancer is often treated using DNA damaging agents, it is not surprising that the DNA repair capacity of tumors modulates sensitivity to chemotherapy. Despite its importance, measurements of DNA damage and repair are far from routine, primarily due to the lack of reliable and rapid DNA damage assays. Here, by bringing together convergent expertise among engineers, biologists and computer programmers, we propose to meet this need by developing a platform for rapid semi- automated single-cell DNA damage quantification that can be broadly distributed and readily applied by researchers in public health, academia, industry and medicine. As defined in the Phase I submission, we created and tested a prototype for a 96-well CometChip platform and have optimized the engineering design and a production apparatus to produce spatially encoded 20 and 96 well demonstrated that supplementation of the Microwell Comet gels with extracellular matrix proteins (EMPs) supports the growth of human cells for up to two weeks and the EMPs do not impact the formation of comets. To enable characterization of the genotoxicity of chemicals used commercially, those found in the environment or newly developed pharmaceuticals, and to quantify DNA repair capacity without the need to identify specific DNA Repair technology. This proposal, to develop the 'DNA Repair on a Chip' technology, combines the use of agarose based Microwell arrays, spatially encoded cellular recognition, automated data processing, and extra-cellular matrix proteins to optimize, validate and commercialize a series of Spatially Encoded Microwell Arrays. We will demonstrate that we have significantly advanced the manufacturing process (Aim1), have developed a macrowell former to produce 96-well and 384-welll CometChips (Aim 2), and propose the implementation of a graphical user interface for data analysis (Aim 3). Finally, we will rigorously validate this new technology by analyzing the genotoxic effects of a range of compounds from the NTP library for their impact on DNA damage and repair responses and to reveal inter-individual and inter-cell type variation in DNA damage responses (Aim 4). Through the integration of traditional methods in biology and engineering, the DNA Repair on a Chip platform described here represents a significant technological advance, providing high-throughput, objective, and quantitative measurements that have the potential to become a new standard in DNA damage analysis.

Public Health Relevance

We describe a new methodology that provides for robust, high-throughput DNA damage and repair analysis by exploiting gravity capture of single cells into a Microwell array. DNA damage levels are revealed morphologically by single-cell gel electrophoresis. The Microwell array enables fully automated DNA damage and DNA repair measurement of multiple experimental conditions simultaneously. This technological advance opens the door to new strategies for drug discovery, genotoxicity testing, and environmental health research through objective, quantitative analyses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
3R44ES021116-03S1
Application #
9060077
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Shaughnessy, Daniel
Project Start
2011-09-20
Project End
2016-08-31
Budget Start
2014-09-01
Budget End
2016-08-31
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Trevigen, Inc.
Department
Type
DUNS #
807864772
City
Gaithersburg
State
MD
Country
United States
Zip Code
20877
Sykora, Peter; Chiari, Ylenia; Heaton, Andrew et al. (2018) Application of the CometChip platform to assess DNA damage in field-collected blood samples from turtles. Environ Mol Mutagen 59:322-333
Sykora, Peter; Witt, Kristine L; Revanna, Pooja et al. (2018) Next generation high throughput DNA damage detection platform for genotoxic compound screening. Sci Rep 8:2771
Nagel, Zachary D; Engelward, Bevin P; Brenner, David J et al. (2017) Towards precision prevention: Technologies for identifying healthy individuals with high risk of disease. Mutat Res 800-802:14-28
Wang, Jingnan; Li, Jianfeng; Santana-Santos, Lucas et al. (2015) A novel strategy for targeted killing of tumor cells: Induction of multipolar acentrosomal mitotic spindles with a quinazolinone derivative mdivi-1. Mol Oncol 9:488-502
Wendell, Stacy Gelhaus; Golin-Bisello, Franca; Wenzel, Sally et al. (2015) 15-Hydroxyprostaglandin dehydrogenase generation of electrophilic lipid signaling mediators from hydroxy ?-3 fatty acids. J Biol Chem 290:5868-80
Ge, Jing; Prasongtanakij, Somsak; Wood, David K et al. (2014) CometChip: a high-throughput 96-well platform for measuring DNA damage in microarrayed human cells. J Vis Exp :e50607
Fouquerel, Elise; Goellner, Eva M; Yu, Zhongxun et al. (2014) ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep 8:1819-1831
Fang, Qingming; Inanc, Burcu; Schamus, Sandy et al. (2014) HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase ?. Nat Commun 5:5513
Li, Jianfeng; Braganza, Andrea; Sobol, Robert W (2013) Base excision repair facilitates a functional relationship between Guanine oxidation and histone demethylation. Antioxid Redox Signal 18:2429-43