Stiffness and alignment of ankle-foot orthoses (AFOs) should be tuned optimally to maximize their function. Improperly tuned AFO may induce joint pain, reduced ambulatory function, and increased medical complications for patients with stroke. Therefore, the relative quality of AFOs fit determined by its stiffness and alignment is of paramount concern in the daily lives of patients ambulating with an AFO. However, no clinical tool is currently available that can objectively guide orthotists to tune the AFO. This has led frequent mismatches between the needs of the patient and the delivered orthosis. The objective of the proposed work is to develop a novel system for AFOs called the Computerized Orthotic Prescription System (COPS). COPS assists orthotists in tuning the AFO stiffness and alignment dynamically in patients with stroke. COPS consists of a diagnostic AFO, intuitive clinical software and a custom-made modular AFO. The diagnostic AFO and the clinical software are used to select optimal components for the custom-made modular AFO delivered to each patient. The diagnostic AFO allows fine- tuning of stiffness and alignment and monitors ankle joint moment and motion. The data will be wirelessly transferred to the computer and the clinical software will instruct how the stiffness and alignment of an AFO should be adjusted. Once the tuning of the diagnostic AFO is completed, the software recommends which components should be selected for the modular AFO. The COPS will give confidence to both orthotists and patients and also significantly reduce time for the iterative process of stiffness and alignment tuning of a AFO.
This project will develop a system that can assist and improve the prescription of ankle-foot orthoses (AFOs) for patients with stroke. The technology will objectively guide the orthotists to determine the optimal stiffness and alignment of AFOs to maximize their dynamic function for each patient in an expedient and cost-effective manner.