This research supports the development and commercialization of a more effective low temperature gas plasma sterilizer (GPS). The GPS represents a true gas plasma technology with the ability to sterilize critical medical devices without the toxicities associated with surface residuals or atmospheric emissions. This sterilization method can provide a faster, more reliable, more economical sterilizer for in-hospital use and broaden the sterilization options available to the medical devices industry. The GPS will positively impact healthcare providers, healthcare consumers, and medical device manufacturers. The GPS will reduce the device turnaround time for reprocessing centers, enabling tighter scheduling of procedures, reduction of device inventories and potentially reduce the morbidity and mortality from nosocomial infections. This GPS will provide medical device manufacturers greater flexibility in device design, allowing more use of heat and moisture sensitive materials, less restrictive device configurations, and reduce their dependence on off-site sterilization providers. Sterilization of critical medical devices, such as surgical instruments, biopsy forceps, cardiac and urinary catheters, implants and needles, is a major issue of responsibility and liability for health care institutions. Sterilization processes help assure prevention of patient morbidity and mortality. Increased use of internal probes such as endoscopes and bronchoscopes is broadening the need for effective in-hospital sterilization methods. Critical medical devices that are heat and moisture sensitive require low temperature sterilization. Unlike currently available low temperature gas plasma sterilizers, the Plasmedix GPS system relies mainly on the discharge plasma field, rather than chemical vapor (i.e. H2O2), for sterilization activity. This significant advancement is the result of a more effective means of generating the plasma field, which is patented by Phygen. To function the GPS requires only a standard AC receptacle and several milliliters of peroxide. Building on the successes of Phase I research, Phase II goals will include identifying and developing features necessary for a commercially viable GPS, continuing with sterilization studies comparing the GPS to currently available sterilization/disinfection methods, and building, validating and evaluating three new production equivalent GPS prototypes in preparation for hospital evaluation and FDA approval. The research design and methods for achieving these goals will include: 1) establishing clear user requirements and specifications, 2) designing a larger capacity GPS that provides thorough plasma and hydrogen peroxide distribution, 3) assuring effective sterilization in accordance with AAMI, ISO and FDA guidelines; and, 4) validating that medical instruments sterilized are safe for use. Appropriate statistical techniques consistent with Good Laboratory Practices (GLP) will be used to verify and validate all test methods. This innovative and flexible Plaxmedix sterilization technology has been recognized by the Department of Defense as being an acceptable replacement for steam sterilization in field and base hospitals. Phygen has been awarded a contract by the US Army to develop and produce transportable sterilization devices. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
5R44HL074653-03
Application #
7246556
Study Section
Special Emphasis Panel (ZRG1-SSMI-K (10))
Program Officer
Mitchell, Phyllis
Project Start
2003-07-01
Project End
2009-12-14
Budget Start
2007-06-15
Budget End
2009-12-14
Support Year
3
Fiscal Year
2007
Total Cost
$787,734
Indirect Cost
Name
Sterilucent, Inc.
Department
Type
DUNS #
005634969
City
Minneapolis
State
MN
Country
United States
Zip Code
55413