Cadaver dissection is a critical exercise in medical education. In addition to the 60,000 plus medical students who participate in cadaver dissection, there are hundreds of thousands of other health care professionals and millions of high school students who would benefit from the exploratory learning experience that cadaver dissection provides. However, only 17,500 cadavers are available annually, and ethical and safety issues prevent such widespread use of what would otherwise be an invaluable educational experience in Anatomy. Over the past decade, personal computers have achieved remarkable performance milestones, driven by the gaming industry. An opportunity exists to develop a Virtual Reality anatomical exploration simulator that combines the best of virtual surgery and multimedia at an affordable cost and brings this invaluable experience to the masses. This proposal describes the Virtual Cadaver Lab, a 3D, real time, interactive exploratory application that allows students to explore the human anatomy the same way that medical students explore physical cadavers. VR offers distinct advantages over physical cadavers, such as the ability to erase mistakes, the ability to explore multiple specimens, the ability to record and playback dissections for assessment, and the ability to augment the experience with tissue and organ specific information. In the Virtual Cadaver Lab simulation, a student will be able to view a human body from any angle, touch it with a virtual probe, and cut open the skin for exploration. Tissues and organs can even be activated to move during their dissection activities. A low cost touch based input device and interface for multi-touch surfaces, such as Microsoft Surface, is proposed. The proposed research has tremendous implications, not only for medical students, but for biology students at the K-12 and undergraduate levels. Medical students can practice on multiple cadavers as a supplement to their lab experience without the need to be present in a cadaver lab, and without regulatory or ethical issues. Other science students can gain valuable insight into the human anatomy by running the software in a schools computer lab or on their home computer. In Phase 1, we showed the feasibility of such a software which was well received by students as well as anatomy professors. In Phase 2, we will convert this prototype into a high-quality, fully functional commercial software package. The software will be evaluated and beta tested in 5 of the nation's leading medical schools.

Public Health Relevance

In addition to the 60,000 plus medical students who participate in cadaver dissection, there are hundreds of thousands of other health care professionals and millions of high school students who would benefit from cadaver dissection. However, only 17,500 cadavers are available annually, and ethical and safety issues prevent such widespread use of what would otherwise be an invaluable educational experience in anatomy. The growing demand to purchase physical specimens and to purchase supplemental materials constitutes a major public health issue.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
2R44RR024103-02
Application #
7999365
Study Section
Special Emphasis Panel (ZRG1-HDM-G (12))
Program Officer
Filart, Rosemarie
Project Start
2010-09-10
Project End
2012-09-09
Budget Start
2010-09-10
Budget End
2011-09-09
Support Year
2
Fiscal Year
2010
Total Cost
$371,448
Indirect Cost
Name
Tactus Technologies, Inc.
Department
Type
DUNS #
102377582
City
Getzville
State
NY
Country
United States
Zip Code
14068