The main goal of the proposed research is to understand the architecture, dynamics, and function of complex assemblies involved in transcriptional activation of human immunodeficiency virus type-1 (HIV-1) gene expression. HIV-1 encodes a transcriptional transactivator protein called Tat, which is expressed early in the viral life cycle and is absolutely required for viral replication and progression to disease. A regulatory element between +1 and +60 in the HIV-1 long terminal repeat which is capable of forming a stable stem-loop structure, designated TAR, is critical for Tat function. Tat interacts with cyclinT1 (CycT1), a regulatory partner of CDK9 in the positive transcription elongation factor b (P-TEFb) complex, and binds cooperatively with CycT1 to TAR RNA. Recruitment of P-TEFb to TAR promotes transcription elongation. P-TEFb is a key enzyme in the control of transcription elongation by RNA polymerase II and there are two pools of P-TEFb, active and inactive, present in the cell. P-TEFb is inactivated by sequestration into a large ribonucleoprotein (RNP) complex containing the small nuclear RNA, 7SK, and the Hexim1 protein. Therefore, there are two RNP complexes, TAR-Tat-P-TEFb and 7SK-Hexim1-P-TEFb, which are important in HIV-1 gene expression, however, it is not known how the equilibrium between these two RNPs is modulated. We have developed novel chemical and physical approaches to probe RNA-protein and protein-protein interactions. The proposed work addresses the structure, dynamics, and function of TAR-Tat-P-TEFb and 7SK-Hexim1-P-TEFb complexes by revealing the molecular network of RNA-RNA and RNA-protein interactions that govern assembly and stability of the RNP complexes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
High Priority, Short Term Project Award (R56)
Project #
3R56AI041404-12A1S1
Application #
7849250
Study Section
AIDS Molecular and Cellular Biology Study Section (AMCB)
Program Officer
Sharma, Opendra K
Project Start
2009-07-24
Project End
2010-06-30
Budget Start
2009-07-24
Budget End
2010-06-30
Support Year
12
Fiscal Year
2009
Total Cost
$474,750
Indirect Cost
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Han, Tianxu; Yang, Chao-Shun; Chang, Kung-Yen et al. (2016) Identification of novel genes and networks governing hematopoietic stem cell development. EMBO Rep 17:1814-1828
Yang, Chao-Shun; Chang, Kung-Yen; Rana, Tariq M (2014) Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogramming. Cell Rep 8:327-37
Li, Zhonghan; Chao, Ti-Chun; Chang, Kung-Yen et al. (2014) The long noncoding RNA THRIL regulates TNF? expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111:1002-7
Shen, Yang; Altman, Michael D; Ali, Akbar et al. (2013) Testing the substrate-envelope hypothesis with designed pairs of compounds. ACS Chem Biol 8:2433-41
Nalam, Madhavi N L; Ali, Akbar; Reddy, G S Kiran Kumar et al. (2013) Substrate envelope-designed potent HIV-1 protease inhibitors to avoid drug resistance. Chem Biol 20:1116-24
Ali, Akbar; Wang, Jinhua; Nathans, Robin S et al. (2012) Synthesis and structure-activity relationship studies of HIV-1 virion infectivity factor (Vif) inhibitors that block viral replication. ChemMedChem 7:1217-29
Parai, Maloy Kumar; Huggins, David J; Cao, Hong et al. (2012) Design, synthesis, and biological and structural evaluations of novel HIV-1 protease inhibitors to combat drug resistance. J Med Chem 55:6328-41
Su, Jie; Baigude, Huricha; McCarroll, Joshua et al. (2011) Silencing microRNA by interfering nanoparticles in mice. Nucleic Acids Res 39:e38
Ghosh, Animesh; Mukherjee, Koushik; Jiang, Xinpeng et al. (2010) Design and assembly of new nonviral RNAi delivery agents by microwave-assisted quaternization (MAQ) of tertiary amines. Bioconjug Chem 21:1581-7
McCarroll, Joshua; Baigude, Huricha; Yang, Chao-Shun et al. (2010) Nanotubes functionalized with lipids and natural amino acid dendrimers: a new strategy to create nanomaterials for delivering systemic RNAi. Bioconjug Chem 21:56-63

Showing the most recent 10 out of 13 publications