Mucopolysaccharidosis I (MPS I) is a lysosomal storage disease caused by deficient a-Liduronidase (IDUA) activity, which results in the accumulation of the glycosaminoglycans heparan and dermatan sulfate. The severe form, known as Hurler syndrome, causes bone and joint abnormalities, pulmonary and cardiac disease, hearing and visual deficiencies, mental retardation, and death around age 5 if untreated. Hematopoietic stem cell transplantation can reduce some manifestations, but has a 15% mortality rate, costs $130,000, and requires a compatible donor. Enzyme replacement therapy can also reduce some symptoms, but costs over $500,000 per year for an adult, requires a weekly infusion, and is not available to all patients. The development of an effective and safe gene therapy for MPS I could have a dramatic positive impact on the lives of patients and the families that care for them. In the previous funding period, we demonstrated that neonatal intravenous injection of a gamma retroviral vector (g-RV) with an intact long-terminal repeat (LTR) expressing canine IDUA had a truly remarkable effect in both mice and dogs with MPS I, with elimination or reduction in all major clinical manifestations. This was due at least in part to efficient transduction of liver cells, which secreted mannose 6-phosphate (M6P)-modified IDUA into blood, which diffused to other organs and was taken up via the M6P receptor. There was also some transduction of blood cells and an undefined cell type in brain, which may have contributed to the therapeutic response. Although no tumors developed in mice or dogs with this approach, the risk of insertional mutagenesis with an LTR-intact vector is a concern. Another problem is that administration of this vector to adult MPS I mice or newborn MPS I cats resulted in a potent cytotoxic T lymphocyte (CTL) response that destroyed transduced cells.
The aims of this renewal application are to: 1) reduce the risk of insertional mutagenesis by developing a self-inactivating g-RV with a deletion in the enhancer of the 3' LTR; 2) attempt to prevent an immune response by avoiding expression in antigen-presenting cells; and 3) analyze the duration of efficacy and evaluate for toxicity in a long-lived large animal model (dog). If successful, this study may hasten the development of a simple and effective treatment for newborn patients that will reduce or prevent the devastating clinical manifestations of MPS I.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
High Priority, Short Term Project Award (R56)
Project #
2R56DK066448-06A1
Application #
7623653
Study Section
Gene and Drug Delivery Systems Study Section (GDD)
Program Officer
Mckeon, Catherine T
Project Start
2003-09-30
Project End
2009-03-31
Budget Start
2008-08-01
Budget End
2009-03-31
Support Year
6
Fiscal Year
2008
Total Cost
$240,436
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Xing, Elizabeth M; Wu, Susan; Ponder, Katherine P (2015) The effect of Tlr4 and/or C3 deficiency and of neonatal gene therapy on skeletal disease in mucopolysaccharidosis VII mice. Mol Genet Metab 114:209-16
Baldo, Guilherme; Wozniak, David F; Ohlemiller, Kevin K et al. (2013) Retroviral-vector-mediated gene therapy to mucopolysaccharidosis I mice improves sensorimotor impairments and other behavioral deficits. J Inherit Metab Dis 36:499-512
Baldo, Guilherme; Mayer, Fabiana Quoos; Martinelli, Barbara et al. (2012) Evidence of a progressive motor dysfunction in Mucopolysaccharidosis type I mice. Behav Brain Res 233:169-75
Dickson, Patricia I; Ellinwood, N Matthew; Brown, Jillian R et al. (2012) Specific antibody titer alters the effectiveness of intrathecal enzyme replacement therapy in canine mucopolysaccharidosis I. Mol Genet Metab 106:68-72
Lyons, Jeremiah A; Dickson, Patricia I; Wall, Jonathan S et al. (2011) Arterial pathology in canine mucopolysaccharidosis-I and response to therapy. Lab Invest 91:665-74
Dickson, Patricia I; Hanson, Stephen; McEntee, Michael F et al. (2010) Early versus late treatment of spinal cord compression with long-term intrathecal enzyme replacement therapy in canine mucopolysaccharidosis type I. Mol Genet Metab 101:115-22
Dierenfeld, Ashley D; McEntee, Michael F; Vogler, Carole A et al. (2010) Replacing the enzyme alpha-L-iduronidase at birth ameliorates symptoms in the brain and periphery of dogs with mucopolysaccharidosis type I. Sci Transl Med 2:60ra89
Metcalf, Jason A; Linders, Bruce; Wu, Susan et al. (2010) Upregulation of elastase activity in aorta in mucopolysaccharidosis I and VII dogs may be due to increased cytokine expression. Mol Genet Metab 99:396-407
Metcalf, Jason A; Ma, Xiucui; Linders, Bruce et al. (2010) A self-inactivating gamma-retroviral vector reduces manifestations of mucopolysaccharidosis I in mice. Mol Ther 18:334-42
Metcalf, Jason A; Zhang, Yanming; Hilton, Matthew J et al. (2009) Mechanism of shortened bones in mucopolysaccharidosis VII. Mol Genet Metab 97:202-11

Showing the most recent 10 out of 12 publications