This application addresses broad challenge area (15) Translational Science and specific challenge topic 15-MH-101, Effects of Psychotropic Medications on Neurodevelopment and Behavior in Animal Models"""""""". Antidepressants and anxiolytics are increasingly prescribed to pediatric patients at progressively younger ages and often for extended periods of time. These drugs act upon neurobiological substrates that undergo profound structural and functional changes from embryogenesis to childhood and adolescence, raising concerns for detrimental drug effects on brain development. In particular, treatment of children and adolescents with antidepressant drugs such as fluoxetine may result in increased suicidal behavior and lethality. Moreover, experiments in mice indicate that administration of fluoxetine during postnatal developmental stages corresponding to the last trimester of human development leads to behavior indicative of heightened anxiety and emotionality in adulthood. These effects are reminiscent of detrimental behavioral effects observed upon treatment of young mice with diazepam, a prototype benzodiazepine that potentiates the function of GABA via GABA-A receptors. Indeed, accumulating evidence suggests that antidepressants such as fluoxetine may exert their effect in part by modulation of GABAergic transmission. Fluoxetine and diazepam therefore might ultimately affect the developing nervous system through common mechanisms that call for a direct comparison. Postnatal brain development involves progressive, neural activity-dependent and function-specific maturation of GABAergic circuits, which at the cellular level includes a switch from mostly depolarizing function of GABA-A receptors to mostly hyperpolarizing effects. This developmental mechanism has been proposed to define temporal boundaries for critical periods of activity-dependent functional maturation that applies universally to most if not all brain functions. Evidence that such mechanisms might apply to the neurobiological substrate of anxiety and mood disorders is available from GABA-A receptor gamma2 subunit heterozygous mice (gamma2 mice), which have been established as an animal model of anxious depression that includes cognitive, behavioral, cellular, and endocrine characteristics associated with anxiety and mood disorders in patients. Importantly, analyses of conditional gamma2 mice suggest that the behavioral and other abnormalities in these mice are mediated by a developmental GABA-A receptor deficit. Interestingly, while diazepam administered to young mice has anxiogenic-like effects on adult behavior in wildtype (WT) mice, similar treatment of young gamma 2 mice is neutral or has anxiolytic like effects. These findings suggest that gamma2 mice exhibit GABAergic deficits in a critical period of neural plasticity in neural circuits relevant for anxiety and depressive- like behavior. Conversely, drug induced potentiation of GABAergic transmission of an otherwise normally developing brain negatively affects proper maturation of the same circuits. Given that fluoxetine and diazepam administered to young WT mice have similar anxiogenic-like effects on behavior in adulthood, we hypothesize that the two drugs interfere similarly with maturation of GABAergic circuits that are relevant for anxiety and depression-related behavior. To further address the mechanism of potentially detrimental developmental effects of fluoxetine and diazepam we here propose to i) determine and compare the postnatal developmental windows during which these two drugs affect behavior of WT and GABAAR gamma2 subunit heterozygous mice in adulthood. In addition, we will analyze and compare the developmental effects of these drugs on diverse molecular and cellular markers that are altered in gamma 2 mice and are implicated in anxiety and depression-related behavior. These studies will alert to potentially detrimental effects of antidepressant and anxiolytic drug on the developing postnatal brain and will help to delineate detrimental from neutral or possibly beneficial drug effects on brain development. In addition, they may advance the design and safety of antidepressant and anxiolytic therapies directed specifically at pediatric and adolescent patients.

Public Health Relevance

Antidepressants, anxiolytics and other psychotropic medications are increasingly prescribed to pediatric patients at progressively younger age and often for extended periods of time. These drugs act upon neurobiological substrates that undergo profound structural and functional changes during childhood and adolescence, yet their mechanisms of action in the developing nervous system are largely unknown. We here take advantage of a mouse model of anxious depression to assess molecular, cellular, endocrine and behavioral consequences of antidepressant drug treatment in young animals representative of pedriatic patients. These studies will alert to potentially detrimental effects of antidepressant and anxiolytic drug on the developing postnatal brain and will help to delineate detrimental from neutral or possibly beneficial drug effects on brain development. In addition, they may advance the design and safety of antidepressant and anxiolytic therapies directed specifically at pediatric and adolescent patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
NIH Challenge Grants and Partnerships Program (RC1)
Project #
1RC1MH089111-01
Application #
7832589
Study Section
Special Emphasis Panel (ZRG1-BDCN-T (58))
Program Officer
Panchision, David M
Project Start
2009-09-30
Project End
2011-08-31
Budget Start
2009-09-30
Budget End
2010-08-31
Support Year
1
Fiscal Year
2009
Total Cost
$420,839
Indirect Cost
Name
Pennsylvania State University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
003403953
City
University Park
State
PA
Country
United States
Zip Code
16802
Du, Keyong; Murakami, Shoko; Sun, Yingmin et al. (2017) DHHC7 Palmitoylates Glucose Transporter 4 (Glut4) and Regulates Glut4 Membrane Translocation. J Biol Chem 292:2979-2991
Ren, Zhen; Pribiag, Horia; Jefferson, Sarah J et al. (2016) Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment. Biol Psychiatry 80:457-468
Leppä, Elli; Linden, Anni-Maija; Aller, Maria I et al. (2016) Increased Motor-Impairing Effects of the Neuroactive Steroid Pregnanolone in Mice with Targeted Inactivation of the GABAA Receptor ?2 Subunit in the Cerebellum. Front Pharmacol 7:403
Ren, Zhen; Sahir, Nadia; Murakami, Shoko et al. (2015) Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice. Neuropharmacology 88:171-9
Luscher, Bernhard; Fuchs, Thomas (2015) GABAergic control of depression-related brain states. Adv Pharmacol 73:97-144
Song, Juan; Zhong, Chun; Bonaguidi, Michael A et al. (2012) Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489:150-4
Wu, Xia; Wu, Zheng; Ning, Gang et al. (2012) ?-Aminobutyric acid type A (GABAA) receptor ? subunits play a direct role in synaptic versus extrasynaptic targeting. J Biol Chem 287:27417-30
Shen, Qiuying; Fuchs, Thomas; Sahir, Nadia et al. (2012) GABAergic control of critical developmental periods for anxiety- and depression-related behavior in mice. PLoS One 7:e47441
Luscher, B; Shen, Q; Sahir, N (2011) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16:383-406
Luscher, Bernhard; Fuchs, Thomas; Kilpatrick, Casey L (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70:385-409

Showing the most recent 10 out of 12 publications