Diabetes and heart failure are diseases of enormous burden to Americans, and current therapies for theseoften-lethal diseases are clearly inadequate. The generation of organs suitable for transplantation offerstremendous potential to treat these types of diseases. The early development of over 20 mammalian organsinvolves the sequential, ordered exchange of signals between interacting epithelial and mesenchymal cellpopulations, resulting in their progressive differentiation. We hypothesize that this complex, dynamicregulatory network can be resolved by the integration of different scientific disciplines and used to designand build organ precursors or parts.As a part of the larger SysCODE consortium we will develop technologies that can be used to engineer thesurrounding microenvironment. We propose to develop novel, three dimensional (3D) microscale constructsto be used as tools to study populations of interacting mesenchymal and epithelial cells . These microscaletechniques will enable the biomimecry of the complex 3D structure of epithelial and mesenchymal cellinteractions that occur in the embryonic in vivo environment. In vivo, the cellular environment is tightlyregulated in 3D by interactions between cell-cell, cell-extracellular matrix (ECM) and cell-soluble factors. Toeffectively mimic mesenchymal and epithelial tissue we will engineer novel hydrogels embedded with celltypes that resemble the cells native to these tissues. Addition features such as the basement membrane willalso be engineered to fascilitate the movement of growth factors and environmental cues between the twotypes of tissue. This will all be accomplished through the successful completion of the following threeSpecific Aims:
Aim 1 : To develop biomimetic materials for engineering the cell-ECM interactions within 3Depithelial-mesenchymal constructs.
Aim 2 : To fabricate microscale constructs that can be used to study the interactions betweenepithelial and mesenchyme cell populations.
Aim 3 : To develop and validate a combinatorial approach to study microenvironmental factors ininteracting epithelial and mesenchymal cell populations.
Saghazadeh, Saghi; Rinoldi, Chiara; Schot, Maik et al. (2018) Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 127:138-166 |
Leijten, Jeroen; Seo, Jungmok; Yue, Kan et al. (2017) Spatially and Temporally Controlled Hydrogels for Tissue Engineering. Mater Sci Eng R Rep 119:1-35 |
Hjortnaes, Jesper; Goettsch, Claudia; Hutcheson, Joshua D et al. (2016) Simulation of early calcific aortic valve disease in a 3D platform: A role for myofibroblast differentiation. J Mol Cell Cardiol 94:13-20 |
Bagherifard, Sara; Tamayol, Ali; Mostafalu, Pooria et al. (2016) Dermal Patch with Integrated Flexible Heater for on Demand Drug Delivery. Adv Healthc Mater 5:175-84 |
Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali et al. (2016) A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics. Adv Mater 28:3280-9 |
Rezaei Nejad, Hojatollah; Goli Malekabadi, Zahra; Kazemzadeh Narbat, Mehdi et al. (2016) Laterally Confined Microfluidic Patterning of Cells for Engineering Spatially Defined Vascularization. Small 12:5132-5139 |
Tamayol, Ali; Akbari, Mohsen; Zilberman, Yael et al. (2016) Flexible pH-Sensing Hydrogel Fibers for Epidermal Applications. Adv Healthc Mater 5:711-9 |
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara et al. (2016) Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving. Adv Healthc Mater 5:751-66 |
Shin, Su Ryon; Li, Yi-Chen; Jang, Hae Lin et al. (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105:255-274 |
Sugiura, Shinji; Cha, Jae Min; Yanagawa, Fumiki et al. (2016) Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels. J Tissue Eng Regen Med 10:690-9 |
Showing the most recent 10 out of 132 publications