All living processes are regulated by the dynamic interactions of proteins with small molecule ligands, partner proteins, nucleic acids, or other macromolecules. Instrumentation that enables quantitative analysis of the specificities and avidities of these interactions in vitro provides a physical foundation for understanding the intricate networks of reactions that contribute to complex biological processes. In this proposal, eleven faculty in the Departments of Biology and Biological Engineering at MIT request funding for the acquisition of an Octet RED96 instrument for the analysis of biomolecular interactions. This instrumentation exploits biolayer interferometry (BLI) to provide real time information on the binding of ligands in solution to immobilized molecules. The instrumentation accommodates a 96-well plate format for high- throughput analysis and is exceptionally versatile. Ligands can range from small molecules (>150 Da) up to very large protein or nucleic acid oligomers, and the acquisition of association and dissociation rate constants rapidly provides equilibrium constants over a broad dynamic range (10 pM - 1 mM) with very efficient sample requirements. Community access to hands-on use of this equipment will advance the pace and sophistication of multiple research programs and will be guaranteed by the central location of the instrument in the shared Biophysical Instrumentation Facility (BIF) in Building 68 of the MIT campus, which is run by a full-time technician (Ms. Debby Pheasant) and is directed by Professor Barbara Imperiali. The oversight committee for the acquisition and administration of all equipment in the BIF comprises Professors Barbara Imperiali (Chair), Robert Sauer, Amy E. Keating, Jacquin Niles and Ms. Debby Pheasant. !

National Institute of Health (NIH)
Office of The Director, National Institutes of Health (OD)
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Birken, Steven
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Schools of Arts and Sciences
United States
Zip Code
Okada, Satoshi; Bartelle, Benjamin B; Li, Nan et al. (2018) Calcium-dependent molecular fMRI using a magnetic nanosensor. Nat Nanotechnol 13:473-477
Gates, Zachary P; Vinogradov, Alexander A; Quartararo, Anthony J et al. (2018) Xenoprotein engineering via synthetic libraries. Proc Natl Acad Sci U S A 115:E5298-E5306
Kauke, Monique J; Traxlmayr, Michael W; Parker, Jillian A et al. (2017) An engineered protein antagonist of K-Ras/B-Raf interaction. Sci Rep 7:5831
Rojas, Anthony J; Zhang, Chi; Vinogradova, Ekaterina V et al. (2017) Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation. Chem Sci 8:4257-4263
Zhang, Chi; Welborn, Matthew; Zhu, Tianyu et al. (2016) ?-Clamp-mediated cysteine conjugation. Nat Chem 8:120-8
Rezaei Araghi, Raheleh; Ryan, Jeremy A; Letai, Anthony et al. (2016) Rapid Optimization of Mcl-1 Inhibitors using Stapled Peptide Libraries Including Non-Natural Side Chains. ACS Chem Biol 11:1238-44
Dai, Peng; Zhang, Chi; Welborn, Matthew et al. (2016) Salt Effect Accelerates Site-Selective Cysteine Bioconjugation. ACS Cent Sci 2:637-646
Traxlmayr, Michael W; Kiefer, Jonathan D; Srinivas, Raja R et al. (2016) Strong Enrichment of Aromatic Residues in Binding Sites from a Charge-neutralized Hyperthermostable Sso7d Scaffold Library. J Biol Chem 291:22496-22508
Tas, Jeroen M J; Mesin, Luka; Pasqual, Giulia et al. (2016) Visualizing antibody affinity maturation in germinal centers. Science 351:1048-54
Lautrette, Guillaume; Touti, Fay├žal; Lee, Hong Geun et al. (2016) Nitrogen Arylation for Macrocyclization of Unprotected Peptides. J Am Chem Soc 138:8340-3

Showing the most recent 10 out of 12 publications