Electron cryo-microscopy (cryo-EM), particularly single particle cryo-EM, has recently experienced tremendous successes in terms of achievable resolution. It is now possible to determine near atomic structures (< 4 ) of a wide range of biological complexes without crystals, from samples ranging from large viruses with icosahedral symmetry, to ribosomes without symmetry and down to small integral membrane proteins such as ion channels. The goal of this proposal is to establish a high performance Linux computer cluster of 640 CPU cores that is optimized and dedicated to process images for near atomic resolution single particle cryo-EM. Establishing such a computer cluster is a critical step towards routinely determining cryoEM structures at near atomic resolution for a broad array of macromolecular complexes. Many biomedical research projects funded by NIH, particularly those requiring structural determination of previously un-crystallizable complexes, will benefit from such technological advancement. All developed software will be freely provided for research community.

National Institute of Health (NIH)
Office of The Director, National Institutes of Health (OD)
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BST-F (30))
Program Officer
Klosek, Malgorzata
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Zhang, Yunxiao; Bulkley, David P; Xin, Yao et al. (2018) Structural Basis for Cholesterol Transport-like Activity of the Hedgehog Receptor Patched. Cell 175:1352-1364.e14
Cheng, Yifan (2018) Single-particle cryo-EM-How did it get here and where will it go. Science 361:876-880
Tsai, Jordan C; Miller-Vedam, Lakshmi E; Anand, Aditya A et al. (2018) Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule. Science 359:
Cheng, Yifan (2018) Membrane protein structural biology in the era of single particle cryo-EM. Curr Opin Struct Biol 52:58-63
Palovcak, Eugene; Wang, Feng; Zheng, Shawn Q et al. (2018) A simple and robust procedure for preparing graphene-oxide cryo-EM grids. J Struct Biol 204:80-84
Nguyen, Nam X; Armache, Jean-Paul; Lee, Changkeun et al. (2018) Cryo-EM structure of a fungal mitochondrial calcium uniporter. Nature 559:570-574
Cormier, Anthony; Campbell, Melody G; Ito, Saburo et al. (2018) Cryo-EM structure of the ?v?8 integrin reveals a mechanism for stabilizing integrin extension. Nat Struct Mol Biol 25:698-704
Takasaka, Naoki; Seed, Robert I; Cormier, Anthony et al. (2018) Integrin ?v?8-expressing tumor cells evade host immunity by regulating TGF-? activation in immune cells. JCI Insight 3:
Kintzer, Alexander F; Green, Evan M; Dominik, Pawel K et al. (2018) Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proc Natl Acad Sci U S A 115:E9095-E9104
Kalia, Raghav; Wang, Ray Yu-Ruei; Yusuf, Ali et al. (2018) Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558:401-405

Showing the most recent 10 out of 19 publications