Synaptic vesicle dynamics govern the release of neurotransmitter and regulation of synaptic vesicle dynamics will control synaptic function and short-term plasticity. Here, we investigate the function of the a2d subunit of voltage sensitive calcium channels and propose that it is a powerful regulator of synaptic vesicle dynamics. Therefore, altering a2d subunit function via pharmaceutical intervention may slow synaptic vesicle dynamics and reduce neurotransmitter release and enhance short-term depression. a2d ligands are such pharmaceutical intervention and are potent analgesic and anticonvulsant drugs. Thus scrutinizing the function of the a2d subunit will lead to new insights about the regulation of synaptic vesicle dynamics. Furthermore, exploiting the signaling pathway downstream of the a2d subunit may lead to promising, future targets for the development of advanced anticonvulsant and analgesic drugs.
The efficacy of synaptic connections governs neuronal activity within the central nervous system. In patients with epilepsy or chronic pain neuronal activity reaches pathological high levels and a subtle reduction of synaptic efficacy may prevent seizures and alleviate pain. In this application, we scrutinize whether limiting the availability of neurotransmitter containing synaptic vesicles can be exploited to reduce synaptic efficacy.
Cruz-Lopez, Didiana; Ramos, Dianne; Castilloveitia, Gloria et al. (2018) Quintuple labeling in the electron microscope with genetically encoded enhanced horseradish peroxidase. PLoS One 13:e0200693 |
Pasaoglu, Taliha; Schikorski, Thomas (2016) Presynaptic size of associational/commissural CA3 synapses is controlled by fibroblast growth factor 22 in adult mice. Hippocampus 26:151-60 |
Schikorski, Thomas (2014) Catching synaptic vesicles in action. Commun Integr Biol 7:e29429 |
Schikorski, Thomas (2014) Readily releasable vesicles recycle at the active zone of hippocampal synapses. Proc Natl Acad Sci U S A 111:5415-20 |