Programmed ribosomal frameshifting (PRF) is a common viral mechanism used to regulate the relative levels of various gene products. How RNA structures induce PRF is a fundamental question of relevance to human health, due to its prevalence in retroviruses that infect and cause human diseases. Human T-cell lymphotropic virus type I (HTLV-I) replication depends on two -1 PRF events, which occur at the gag-pro and pro-pol open reading frame junctions. How the cis-acting RNA elements at these genomic locations function to induce frameshifting is unknown. The long-term goal of this research is to improve understanding of how viral RNA structures manipulate host-translational machinery to ensure successful viral replication. The overall objective of this application is to determine the structural basis of -1 PRF in the HTLV-I retrovirus. Our central hypothesis is that specific regions of thermodynamic stability within each frameshift site structure are fundamental to frameshift stimulation.The rationale that underlies the proposed research is that once the structural basis of -1 PRF is understood, a significant gap in the knowledge base about the HTLV-I frameshift mechanisms would be filled. We propose two specific aims: 1) Define the HTLV-I frameshift site RNA structures, and 2) Investigate the relationship between each structure's local thermodynamic stability and -1 PRF efficiency. In this proposal, local thermodynamic stability is defined by the stability of base-pairs positioned directly outside of the mRNA entry channel at the time of frameshifting. To accomplish these aims, RNA chemical probing experiments will be combined with computational methods to define the RNA secondary structures at each frameshift site. Mutagenesis and in vitro frameshift assays will be used to evaluate the importance of each structure to -1 PRF and to investigate the relationship between local thermodynamic stability and frameshift efficiency. The results of the proposed research are significant because they will substantially increase what is known about HTLV-I structure-stimulated programmed ribosomal frameshifting. These studies promise to open new research horizons, particularly in targeting HTLV-I frameshift sites as a means of disrupting HTLV-I replication.

Public Health Relevance

An estimated ten million people are infected with the retrovirus human T-cell lymphotropic virus type I (HTLV-I). Approximately 5% of these infections are associated with adult T-cell leukemia/lymphoma, an aggressive form of leukemia/lymphoma. Establishment of a HTLV-I infection is dependent upon the reverse transcription of the viral positive sense RNA genome and the integration of the resulting DNA into the host genome. Both processes require viral enzymes that are expressed by way of two independent translational recoding events. The proposed research is relevant to public health because it will reveal the structural basis of HTLV-I translational recoding. The basic research in this proposal will increases our understanding of structure- stimulated translational recoding and it will facilitate advances in prevention of HTLV-I replication.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Pilot Research Project (SC2)
Project #
1SC2GM121197-01
Application #
9208293
Study Section
Special Emphasis Panel (ZGM1-RCB-X (SC))
Program Officer
Bender, Michael T
Project Start
2017-02-01
Project End
2020-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
1
Fiscal Year
2017
Total Cost
$112,797
Indirect Cost
$12,797
Name
Fort Lewis College
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
040705659
City
Durango
State
CO
Country
United States
Zip Code
81301