Atherosclerosis is the most common type of heart disease and a common cause of heart attacks. Atherosclerosis is caused by plaque deposition along the inner walls of the arteries of the heart, which narrows the arteries and restricts blood flow. Stents can be inserted into arteries to keep them open. However, risks associated with these permanent metal structures include restenosis because of long-term endothelial dysfunction, late thrombosis, permanent physical irritation, toxic metal ion release, thromboembolism, and local chronic inflammation. We will investigate the use of biodegradable metals (magnesium alloys) in stents. These alloys can provide temporary mechanical integration for the first few months and then be slowly absorbed into the body. Such stents can reduce late stent thrombosis, improved lesion imaging with computed tomography or magnetic resonance (the density of magnesium is similar with the density of bone), facilitation of repeat treatments (either surgical or percutaneous) to the same site, restoration of vasomotion and freedom from side-branch obstruction by struts. However, development of these potentially important devices is hampered by the lack of detailed information concerning the interaction between the degrading metal surface and the surrounding blood and tissue. This proposal is to study biodegradable magnesium-based stents for the next generation of stenting technology. A properly engineered microfluidic device can simultaneously assess thrombogenic potential on a degrading magnesium surface over the range of physiological shear stresses using only a small volume of blood. In vitro studies will provide new knowledge on the effects of blood on magnesium stents for clinical success of stents.
The specific aims of the proposed studies follow; (1) to compare the surface degradation behavior of magnesium-based and stainless steel - we will test the hypothesis that varying shear stress in microfluidic chips will mimic in vivo physiological flow conditions and allow consistent quantitative measurement of magnesium degradation, (2) to compare physiological response to magnesium and stainless steel in the model system - the hypothesis that new knowledge of correlation between platelet deposition and the corrosion of magnesium alloys will provide quantitative value for thrombogenic potential, (3) to assess embolism potential of biodegradable magnesium - we will test the hypothesis that magnesium degradation products are soluble, rather than particulate, and unlikely to pose an embolism risk. This application, which leverages Dr. Yeoheung Yun's expertise in biomaterial science, will initiate a major shift in stent design and use, and open up new strategies for the treatment of atherosclerosis.

Public Health Relevance

Tubular metal inserts, or stents, are the major treatment for atherosclerosis, a significant cause of heart attack. However, current stent technology is associated with long-term endothelial dysfunction, restenosis, late thrombosis, toxic metal ion release, thromboembolism and local chronic inflammation. This project will investigate the in vivo behavior of various magnesium alloys, with the goal of developing biodegradable metal stents that will mitigate many of these complications.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Continuance Award (SC3)
Project #
5SC3GM113728-03
Application #
9210636
Study Section
Special Emphasis Panel (ZGM1-TWD-3 (SC))
Program Officer
Krasnewich, Donna M
Project Start
2015-04-15
Project End
2019-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
3
Fiscal Year
2017
Total Cost
$97,200
Indirect Cost
$29,700
Name
North Carolina Agri & Tech State University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
071576482
City
Greensboro
State
NC
Country
United States
Zip Code
27411
Wang, Juan; Liu, Lumei; Wu, Yifan et al. (2017) Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration. Acta Biomater 50:546-555
Liu, Lumei; Koo, Youngmi; Collins, Boyce et al. (2017) Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system. PLoS One 12:e0182914
Koo, Youngmi; Lee, Hae-Beom; Dong, Zhongyun et al. (2017) The Effects of Static and Dynamic Loading on Biodegradable Magnesium Pins In Vitro and In Vivo. Sci Rep 7:14710
Koo, Youngmi; Jang, Yongseok; Yun, Yeoheung (2017) A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals. Mater Sci Eng B Solid State Mater Adv Technol 219:45-54
Koo, Youngmi; Tiasha, Tarannum; Shanov, Vesselin N et al. (2017) Expandable Mg-based Helical Stent Assessment using Static, Dynamic, and Porcine Ex Vivo Models. Sci Rep 7:1173
Koo, Youngmi; Shanov, Vesselin N; Yun, Yeoheung (2016) Carbon Nanotube Paper-Based Electroanalytical Devices. Micromachines (Basel) 7:
Wang, Juan; Jang, Yongseok; Wan, Guojiang et al. (2016) Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study. Corrosion science 104:277-289
White, Leon; Koo, Youngmi; Neralla, Sudheer et al. (2016) Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO). Mater Sci Eng B Solid State Mater Adv Technol 208:39-46