The basic purpose of the proposed program for Multidisciplinary Engineering Training in Musculoskeletal Research is to provide predoctoral trainees with a superb foundation in the biomedical engineering sciences and technologies that are a critical component of musculoskeletal research, while also teaching them the language of communication and collaboration with clinician and biomedical scientists in this broad field. Musculoskeletal research is a rich multidisciplinary field where some of the most exciting advances occur at the interface between the clinical, biological and engineering sciences. However, within each of these disciplines, a very broad range of sub-specializations exists. When a team of musculoskeletal researchers comes together, an optimal synergistic interaction is most likely to occur if each member brings the best and broadest level of expertise from his/her discipline to the table, while still being conversant in the areas of other team members. Thus, the training program proposed in this application is intended to provide trainees with a broad set of biomedical engineering foundations in biomechanics, cell and tissue engineering, and biomedical imaging, to enable excellence and leadership on interdisciplinary teams of musculoskeletal researchers, employing state-of-the-art engineering science, technology, and theoretical, computational and experimental techniques, in the study of the various soft and hard tissues of the musculoskeletal system. The program will capitalize on the large number of active musculoskeletal researchers at Columbia, their broad range of expertise, and extensive available resources. The program will recruit 3 new trainees per year on average, for a total of 15 trainees over the 5 year period of the project. Each trainee will be supported on this grant for two years, then transition to existing sponsored projects under the direction of one or more mentors.
Engineering sciences and technologies represent a pillar of musculoskeletal research. Engineering breakthroughs can have a major impact on our understanding of disease progression and the development of clinical treatment modalities.
Showing the most recent 10 out of 32 publications