The proposal initiates a new, innovative training program in Computational Neural Engineering at Georgia Tech and Emory University to train the next generation of researchers at the intersection of computational neuroscience, data science, and clinical neurophysiology. It addresses the opportunities provided by the explosion of tools for measurement and manipulation of nervous system function and the challenges posed by the growing threat of neurological diseases and disorders on an expanding senior population. The program leverages past successes in federally-funded training efforts that have helped to catalyze rapid and recent growth in research and education in Computational Neural Engineering across Emory and Georgia. Early exposure to the intersection of fields is critical to the program mission. Interdisciplinary training in the first two years of the PhD program will provide trainees with unique opportunities for training across axes that span basic to clinical neuroscience, and from neural engineering to computational neuroscience, data science, and machine learning. Two graduate students per will be recruited from the applicant pools for the Biomedical Engineering (GT and Emory), Bioengineering (GT), Electrical and Computer Engineering (GT), and Machine Learning PhD programs, which collectively enroll over 200 PhD students per year. None of the participating programs offer research rotations or funding in the first year of graduate school. We will support a total of four students per year over a five-year period, providing two years of support for two entering students per year. funding such support will help attract the highest quality students to the program, and offer trainees the unique opportunity to rotate through research labs and establish new collaborative research projects. In our prior training experience, such interactions have led to new collaborations funded through fellowships and new research grants. Didactic training will complement core training in each PhD program with existing and new courses in computational neuroscience, neuropathology and neuroengineering, and a new course providing students with an immersive clinical experience at the Emory Brain Health Center. Extracurricular training includes Innovation Forums for clinician/engineering interactions, and a wide variety of seminars, methods clinics, and journal clubs. Trainees will also be provided with professional development for this new generation of researchers, including training in leadership, mentorship, neuroethics, and public scholarship. Trainees will also learn the growing industry in neural engineering, and will have opportunities for internships. Importantly, with solid preliminary evidence for the success in all of these ventures, this program targets an imperative area for growth.

Public Health Relevance

Our program will train the next generation of researchers to overcome challenges posed by the growing threat of neurological diseases and disorders on an expanding senior population. The training focuses on leveraging the explosion of new tools for understanding nervous system function in combination with a clinical understanding of neurological conditions and advanced methods in computation, data science, and machine learning. Trainees will tackle programs fundamental to advancing technology-based treatments for neurological diseases such as Parkinson?s disease, epilepsy, and depression.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Institutional National Research Service Award (T32)
Project #
1T32EB025816-01A1
Application #
9705578
Study Section
Special Emphasis Panel (ZEB1)
Program Officer
Erim, Zeynep
Project Start
2019-07-01
Project End
2024-06-30
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Georgia Institute of Technology
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
097394084
City
Atlanta
State
GA
Country
United States
Zip Code
30332