The mission of the Medical Scientist Training Program (MSTP) of the Albert Einstein College of Medicine is to train physician-scientists who will become future leaders in biomedical and clinical research. It strives to recruit a diverse group of outstanding students and to provide them with rigorous combined medical and research training that prepares them for careers as physician-scientists. Through a flexible and continuously evolving curriculum that includes 1) specialized MSTP courses and 2) integration of grad and med school curriculum in the first 2 years, the students are guided through a program that can be tailored to meet their individual needs and interests. The program seeks to provide the trainees with a unique foundation for careers as independent physician-scientists and to facilitate their placement into outstanding postgraduate training programs to facilitate the next step in their career progression. The training program has 3 phases. In the first 2 years students take an integrated combination of medical, graduate and MSTP-specific courses to provide the didactic foundation for their research and clinical training. They perform research rotations to assist them in choosing their thesis research lab. In the program's 2nd phase, they perform independent, original research under their mentor's guidance. They publish their discoveries in high quality peer reviewed papers and prepare and defend a Ph.D. thesis. Participation in an evening, MSTP-run, ambulatory outpatient clinic allows them to build their clinical skills during the PhD phase of the program. In the final phase, they complete their clinical training on the wards. The admissions process seeks to identify individuals with the intelligence, curiosity, creativity, perseverance and enthusiasm for science that is essential for future success in a research career. 117 trainees are in the program, 43% are woman and 14% are members of underrepresented minorities. Since its inception in 1964 as one of the first three NIH funded MD-PhD training programs, 359 trainees have graduated. 277 have completed postgraduate training and published over 14,611 papers, an average of 53 papers per graduate. 82% have jobs at academic medical centers, research institutes, NIH or pharmaceutical companies. By various measures, the program graduates have achieved outstanding success in their chosen careers and have contributed to the advancement of biomedical research and academic medicine. Based on the quality of our past accomplishments, we propose to expand the program, to further integrate graduate and medical training, and increase opportunities for involvement in clinical and translational research in order to prepare a future generation of physician-scientists who will be at the leading edge of biomedical research with the ultimate goal of improving human health and reducing the burden of disease.

Public Health Relevance

physician-scientists perform a critical role at the interface between basic biomedical research and clinical medicine. This program will train a diverse group of highly skilled physician-scientists who will facilitate the process of scientific discovery that aims to reduce the burden o disease for all Americans. PUBLIC HEALTH RELEVANCE: This program will train a diverse group of outstanding students and prepare them to enter the biomedical research workforce as physician-scientists who will perform basic, translational and clinical research. This research will lead to new treatments to prevent or cure disease and improve the health of all Americans.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007288-44
Application #
9307860
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Maas, Stefan
Project Start
1975-07-01
Project End
2018-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
44
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine, Inc
Department
Type
DUNS #
079783367
City
Bronx
State
NY
Country
United States
Zip Code
10461
Sorrells, Shelly; Nik, Sara; Casey, Mattie et al. (2018) Spliceosomal components protect embryonic neurons from R-loop-mediated DNA damage and apoptosis. Dis Model Mech 11:
Hayama, Ryo; Sparks, Samuel; Hecht, Lee M et al. (2018) Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex. J Biol Chem 293:4555-4563
Hodge, Dayle Q; Cui, Jihong; Gamble, Matthew J et al. (2018) Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition. Sci Rep 8:841
Diacou, Raven; Zhao, Yilin; Zheng, Deyou et al. (2018) Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation. Cell Rep 25:2510-2523.e4
Manning, Edward P; Mishall, Priti L; Weidmann, Maxwell D et al. (2018) Early and prolonged opportunities to practice suturing increases medical student comfort with suturing during clerkships: Suturing during cadaver dissection. Anat Sci Educ 11:605-612
Keller, Corey J; Huang, Yuhao; Herrero, Jose L et al. (2018) Induction and Quantification of Excitability Changes in Human Cortical Networks. J Neurosci 38:5384-5398
Gil, Nelson; Fiser, Andras (2018) Identifying functionally informative evolutionary sequence profiles. Bioinformatics 34:1278-1286
Wilson, Tommy J; Gray, Michael J; Van Klinken, Jan-Willem et al. (2018) Macronutrient composition of a morning meal and the maintenance of attention throughout the morning. Nutr Neurosci 21:729-743
Jain, Shweta; Stock, Ariel; Macian, Fernando et al. (2018) A Distinct T Follicular Helper Cell Subset Infiltrates the Brain in Murine Neuropsychiatric Lupus. Front Immunol 9:487
Tozour, Jessica N; Delahaye, Fabien; Suzuki, Masako et al. (2018) Intrauterine Hyperglycemia Is Associated with an Impaired Postnatal Response to Oxidative Damage. Stem Cells Dev 27:683-691

Showing the most recent 10 out of 721 publications