Research training in genetics is proposed at the Departments of Biology and Chemistry within the University of Oregon. Funds are requested for 10 predoctoral positions, within a program that includes approximately 60 graduate students and 55 postdoctoral trainees. Twenty-one training faculty participate. The program places special emphasis on three research areas: 1) genetic regulation in microbes, 2) regulation of gene action in multicellular eukaryotes, and 3) population and quantitative genetics. The basic aspect of the training is laboratory research carried out under the direction of a faculty member in the genetics program. Through this experience, the trainee becomes skilled at posing questions about fundamental genetic processes and designing experiments to answer those questions. This training is augmented by formal courses offered in the two departments and by seminar programs that highlight current research in genetics and related disciplines. The training facilities include the laboratories of the training faculty and a number of support services such as media preparation, oligonucleotide synthesis, peptide synthesis, protein sequencing, and monoclonal antibody facilities. Major equipment is shared and is housed in common space. The laboratories of most of the training faculty are contiguous in interconnected buildings. This arrangement maximizes interactions and collaborations among faculty and trainees.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM007413-26
Application #
6454131
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Rhoades, Marcus M
Project Start
1977-07-01
Project End
2007-06-30
Budget Start
2002-07-01
Budget End
2003-06-30
Support Year
26
Fiscal Year
2002
Total Cost
$315,940
Indirect Cost
Name
University of Oregon
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
948117312
City
Eugene
State
OR
Country
United States
Zip Code
97403
Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L et al. (2018) Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling. Development 145:
Kasimatis, Katja R; Moerdyk-Schauwecker, Megan J; Phillips, Patrick C (2018) Auxin-Mediated Sterility Induction System for Longevity and Mating Studies in Caenorhabditis elegans. G3 (Bethesda) 8:2655-2662
Carreira-Rosario, Arnaldo; Zarin, Aref Arzan; Clark, Matthew Q et al. (2018) MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. Elife 7:
Jamieson, Kirsty; McNaught, Kevin J; Ormsby, Tereza et al. (2018) Telomere repeats induce domains of H3K27 methylation in Neurospora. Elife 7:
Kasimatis, Katja R; Phillips, Patrick C (2018) Rapid Gene Family Evolution of a Nematode Sperm Protein Despite Sequence Hyper-conservation. G3 (Bethesda) 8:353-362
Clark, Matthew Q; Zarin, Aref Arzan; Carreira-Rosario, Arnaldo et al. (2018) Neural circuits driving larval locomotion in Drosophila. Neural Dev 13:6
Kasimatis, Katja R; Moerdyk-Schauwecker, Megan J; Timmermeyer, Nadine et al. (2018) Proteomic and evolutionary analyses of sperm activation identify uncharacterized genes in Caenorhabditis nematodes. BMC Genomics 19:593
Loes, Andrea N; Bridgham, Jamie T; Harms, Michael J (2018) Coevolution of the Toll-Like Receptor 4 Complex with Calgranulins and Lipopolysaccharide. Front Immunol 9:304
Stagaman, Keaton; Cepon-Robins, Tara J; Liebert, Melissa A et al. (2018) Market Integration Predicts Human Gut Microbiome Attributes across a Gradient of Economic Development. mSystems 3:
Borne, Flora; Kasimatis, Katja R; Phillips, Patrick C (2017) Quantifying male and female pheromone-based mate choice in Caenorhabditis nematodes using a novel microfluidic technique. PLoS One 12:e0189679

Showing the most recent 10 out of 107 publications