The mission of the UCLA/CIT MSTP is to educate outstanding physician-scientist for the 21st century, to fulfill this mission, our goals are: 1) recruit the brightest and most accomplished students, 2) provide an optimum environment for achieving their education and research goals, 3) to encourage individual thinking, problem solving and lifelong learning, and 4) to provide a comprehensive support system to meet the trainees' needs. The affiliation agreement entered into with CIT in 1997 has been successful in attracting applicants to the MSTP with interests and background in quantitative sciences, engineering and physical chemistry. The program is structured for seven years of study with three and a half years of medical school. Students perform three research rotations prior to initiating the PhD degree. Student may enter the PhD programs in Biological Chemistry, Biomathematics, Biomedical Physics, Chemistry & Biochemistry, Human Genetics, Microbiology, Immunology and Molecular Genetics, Molecular Cellular and Developmental Biology, Neurobiology, Experimental Pathology, Molecular and Medical Pharmacology, Physiology, Psychology, Public Health and interdepartmental programs in Molecular Biology, Neurosciences, Neuroengineering and Biomedical Engineering. Trainees have also chosen to study health economics and Philosophy (bioethics). We propose to increase the size of the program from 10% to 15% of the incoming medical school class or 18 students per year. We are requesting an increase of 6 trainee positions from this grant, from 34 to 40 trainee positions. We believe that with increasing interest in the combined programs of UCLA and CIT and the strength of the applicant pool we have seen in recent years, we can recruit strong candidates for physician-scientist training who will remain in academic medicine and research careers. Both UCLA and CIT have both the physical plant and financial resources in addition to strong and committed faculty to train the next generation of scientists. In 2004, the UCLA Medical Center will open with the most advanced health care services available to patients and families. An additional 400,000 square feet of research space and a new medical school building are planned or under construction. Capital projects at CIT are also underway with a new integrative biology building, the Broad Center, in progress. Both institutions are actively recruiting new faculty to fulfill their research missions and to train new, young scientists.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008042-22
Application #
6770022
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Shapiro, Bert I
Project Start
1983-07-01
Project End
2008-06-30
Budget Start
2004-07-01
Budget End
2005-06-30
Support Year
22
Fiscal Year
2004
Total Cost
$1,176,426
Indirect Cost
Name
University of California Los Angeles
Department
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
He, Cynthia X; Arroyo, Erica D; Cantu, Daniel A et al. (2018) A Versatile Method for Viral Transfection of Calcium Indicators in the Neonatal Mouse Brain. Front Neural Circuits 12:56
Hu, Junhui; Schokrpur, Shiruyeh; Archang, Maani et al. (2018) A Non-integrating Lentiviral Approach Overcomes Cas9-Induced Immune Rejection to Establish an Immunocompetent Metastatic Renal Cancer Model. Mol Ther Methods Clin Dev 9:203-210
Wang, Dong; Li, LeeAnn K; Dai, Tiffany et al. (2018) Adult Stem Cells in Vascular Remodeling. Theranostics 8:815-829
Pellionisz, Peter A; Namiri, Nikan K; Suematsu, Gregory et al. (2018) Vibroacoustographic System for Tumor Identification. Yale J Biol Med 91:215-223
Park, Jung Wook; Lee, John K; Sheu, Katherine M et al. (2018) Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 362:91-95
Takahashi, Toshiya; Kulkarni, Nikhil Nitin; Lee, Ernest Y et al. (2018) Cathelicidin promotes inflammation by enabling binding of self-RNA to cell surface scavenger receptors. Sci Rep 8:4032
Mochizuki, Aaron Y; Frost, Isaura M; Mastrodimos, Melina B et al. (2018) Precision Medicine in Pediatric Neurooncology: A Review. ACS Chem Neurosci 9:11-28
Darabedian, Narek; Thompson, John W; Chuh, Kelly N et al. (2018) Optimization of Chemoenzymatic Mass Tagging by Strain-Promoted Cycloaddition (SPAAC) for the Determination of O-GlcNAc Stoichiometry by Western Blotting. Biochemistry 57:5769-5774
Lee, Michelle W; Lee, Ernest Y; Wong, Gerard C L (2018) What Can Pleiotropic Proteins in Innate Immunity Teach Us about Bioconjugation and Molecular Design? Bioconjug Chem 29:2127-2139
Tsoi, Jennifer; Robert, Lidia; Paraiso, Kim et al. (2018) Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress. Cancer Cell 33:890-904.e5

Showing the most recent 10 out of 316 publications