Modern drug discovery and development require the training of scientists who understand the molecular, physiological and quantitative basis of drug action and specificity, and who can apply modern technologies and concepts to the development of novel therapeutic strategies. This multidisciplinary doctoral training program in the Pharmacological Sciences is designed to help meet that demand by preparing students for biomedical research careers in schools of medicine, dentistry and pharmacy, in research institutes, and in governmental or industrial laboratories. The most important component of training is laboratory research, first as a series of research rotations, then in the dissertation laboratory. This training is complemented by a core course that integrates the theoretical and experimental foundations of modern biological sciences;core courses in pharmacology that emphasize quantitative analysis of drug action, pharmacokinetics, drug disposition, biostatistics and experimental design;advanced courses in specialty areas;seminar courses and journal clubs. Emphasis throughout is placed on development and refinement of communication and analytical skills. The 48 training faculty represent 17 basic science and clinical departments at Emory providing a wealth of diverse research training opportunities. Research foci in the program include Neurological Diseases and Therapy, Cancer Pharmacology, Cardiovascular Pharmacology, Chemical Biology and Drug Discovery and Novel Therapeutic Modalities. Cell Signaling, Systems and Integrative Pharmacology, and Toxicology are crosscutting themes. This Program currently supports six students each year, who are selected mainly from a pool of approximately 20-30 eligible students in the first three years of the Molecular and Systems Pharmacology (MSP) Program. Six slots are requested in this renewal. Graduates will have acquired broad familiarity with pharmacology, knowledge in depth in the area of dissertation research, and the technical, communicative and analytical skills necessary to pursue an independent research career. Students graduate an average of 5.9 years after matriculation. The research conducted by the trainees in this program will advance our knowledge of disease processes and contribute to development of novel and improved therapeutic strategies that will benefit the health of our citizens. By preparing young scientists to contribute to and lead the nation's efforts in these areas, this training program will help to ensure that our ability to imprve the nation's health remains strong in the future.

Public Health Relevance

This application requests funds to support the training of 6 graduate students per year in an interdisciplinary Pharmacological sciences graduate program. Forty-eight training faculty from 17 departments provide a wealth of diverse research training opportunities for students. The goal is to produce broadly trained scientists who will contribute t the discovery and development of novel therapeutic agents that will improve healthcare in the United States and worldwide.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008602-18
Application #
8668965
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
1996-07-01
Project End
2017-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
18
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Emory University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Fernandes, Jolyn; Chandler, Joshua D; Liu, Ken H et al. (2018) Putrescine as indicator of manganese neurotoxicity: Dose-response study in human SH-SY5Y cells. Food Chem Toxicol 116:272-280
Wells, Gordon; Yuan, Hongjie; McDaniel, Miranda J et al. (2018) The GluN2B-Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand-unbinding and domain opening. Proteins 86:1265-1276
Bian, Xuehai; Liang, Zhongxing; Feng, Amber et al. (2018) HDAC inhibitor suppresses proliferation and invasion of breast cancer cells through regulation of miR-200c targeting CRKL. Biochem Pharmacol 147:30-37
Hudson, William H; Vera, Ian Mitchelle S de; Nwachukwu, Jerome C et al. (2018) Cryptic glucocorticoid receptor-binding sites pervade genomic NF-?B response elements. Nat Commun 9:1337
Brown, Harrison C; Zakas, Philip M; George, Stephan N et al. (2018) Target-Cell-Directed Bioengineering Approaches for Gene Therapy of Hemophilia A. Mol Ther Methods Clin Dev 9:57-69
Gibb, Alasdair J; Ogden, Kevin K; McDaniel, Miranda J et al. (2018) A structurally derived model of subunit-dependent NMDA receptor function. J Physiol 596:4057-4089
Collins, Jeffrey M; Walker, Douglas I; Jones, Dean P et al. (2018) High-resolution plasma metabolomics analysis to detect Mycobacterium tuberculosis-associated metabolites that distinguish active pulmonary tuberculosis in humans. PLoS One 13:e0205398
Hansen, Kasper B; Yi, Feng; Perszyk, Riley E et al. (2018) Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 150:1081-1105
Gurbani, Saumya S; Schreibmann, Eduard; Maudsley, Andrew A et al. (2018) A convolutional neural network to filter artifacts in spectroscopic MRI. Magn Reson Med 80:1765-1775
Hu, Xin; Chandler, Joshua D; Orr, Michael L et al. (2018) Selenium Supplementation Alters Hepatic Energy and Fatty Acid Metabolism in Mice. J Nutr 148:675-684

Showing the most recent 10 out of 176 publications