The mission of the Mayo MSTP is to train talented and passionate students to be critical, productive physician scientists. Our main objective is to prepare our students for academic careers in basic, translational and clinical research, focused on studying fundamental questions and translating basic discoveries into medical advances. The Director's and Associate Director's philosophy is that the skills required for this type of academic career are best developed in a basic research setting;however, the unique quality of the physician scientist is the ability to integrate basic studies with translational and clinical research to ultimately advance the practice of medicine. An MSTP grant was first awarded by NIGMS in 2003 and renewed in 2008. During the first nine years of support, our MSTP has continued to develop and mature while maintaining the aspects that were praised by Reviewers of the prior submissions. The main strengths of our MSTP are: * An enthusiastic training faculty of 91 mentors that provides extensive opportunities for cutting-edge interdisciplinary training in basic, translational, and clinical research; * Outstanding current students who are passionate about the study of fundamental biological processes of relevance to human disease; * A highly competitive applicant pool; * An autonomous admissions process that enables selection of students based on their prior research experiences and excitement for biomedical research; * An effective recruitment and retention plan to enhance diversity with two URM MD-PhD students who completed training during the past five years and eight URM and/or students from disadvantaged background or with disabilities who are currently in training; * Integration of medical and graduate school curricula, which allows students to complete three required graduate courses and two laboratory rotations during MS1 and MS2; * Programmatic features, including the MSTP Selectives, Weekly MSTP Conferences, MSTP Annual Retreat, and MSTP Clinical Re-Entry Course that respond to specific needs of MD-PhD students; * Strong institutional support for education, which enables us to fund our MD-PhD students throughout their medical and graduate training, providing exceptional flexibility in choosing thesis laboratories; * Exceptional research resources that are accessible to our students and profoundly enhance their educational experience; * A dedicated Director and Associate Director and outstanding administrative support for the Program.

Public Health Relevance

The educational mission of the Mayo Clinic MSTP is to train future leaders in biomedical research and academic medicine. In addition to providing strong education in medicine and intensive training in scientific inquiry, we strive to (i) train our students to seek medical implications in even the most basic scientific discoveries;(ii) foster their innate curiosity so that they will be keen to take clinical questions back to the laboratory o look for new fundamental knowledge;and (iii) develop their leadership and collaborative skills so that they will be prepared to bridge basic and clinical research efforts as they pave the way for innovative solutions to medical problems. Mayo Clinic's exceptionally strong integration between basic science and clinical and translational research fosters the environment necessary to achieve our educational mission.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM065841-12
Application #
8688259
Study Section
(TWD)
Program Officer
Preusch, Peter
Project Start
2003-07-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
12
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
City
Rochester
State
MN
Country
United States
Zip Code
55905
Smestad, John; Hamidi, Oksana; Wang, Lin et al. (2018) Characterization and metabolic synthetic lethal testing in a new model of SDH-loss familial pheochromocytoma and paraganglioma. Oncotarget 9:6109-6127
Joseph, Josiane; Cho, Dong Seong; Doles, Jason D (2018) Metabolomic Analyses Reveal Extensive Progenitor Cell Deficiencies in a Mouse Model of Duchenne Muscular Dystrophy. Metabolites 8:
Singh, Raman Deep; Hillestad, Matthew L; Livia, Christopher et al. (2018) M3RNA Drives Targeted Gene Delivery in Acute Myocardial Infarction. Tissue Eng Part A :
Wilton, Katelynn M; Matteson, Eric L; Crowson, Cynthia S (2018) Risk of Obstructive Sleep Apnea and Its Association with Cardiovascular and Noncardiac Vascular Risk in Patients with Rheumatoid Arthritis: A Population-based Study. J Rheumatol 45:45-52
Smestad, John; Erber, Luke; Chen, Yue et al. (2018) Chromatin Succinylation Correlates with Active Gene Expression and Is Perturbed by Defective TCA Cycle Metabolism. iScience 2:63-75
Cohen, Devon A; Lopez-Chiriboga, A Sebastian; Pittock, Sean J et al. (2018) Posttransplant autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm 5:e497
Wilton, Katelynn M; Billadeau, Daniel D (2018) VASP Regulates NK Cell Lytic Granule Convergence. J Immunol 201:2899-2909
Naylor, Ryan M; Wohl, Anton; Raghunathan, Aditya et al. (2018) Novel suprasellar location of desmoplastic infantile astrocytoma and ganglioglioma: a single institution's experience. J Neurosurg Pediatr 22:397-403
Jo, Hang Joon; McCairn, Kevin W; Gibson, William S et al. (2018) Global network modulation during thalamic stimulation for Tourette syndrome. Neuroimage Clin 18:502-509
Moyer, Ann M; de Andrade, Mariza; Faubion, Stephanie S et al. (2018) SLCO1B1 genetic variation and hormone therapy in menopausal women. Menopause 25:877-882

Showing the most recent 10 out of 112 publications