The goal of our training program is to develop basic behavioral scientists with rigorous broad- based training in two biomedical sciences - neuroscience and genetics. To do this we developed a training program that focuses on the interface of psychology, neuroscience, and genetics. Trainees have been pre-doctoral students - 6 per year - with a strong interest in understanding human behavior from a biomedical perspective. The training program includes fairly equal participation from faculty in Washington University's Psychology, Neuroscience, and Genetics programs. The training program provides students with systematic exposure to the behavioral perspectives from psychology, integrated with biomedical perspectives from systems and computational neuroscience along with behavioral, molecular, statistical genetics, and genomics. The goal is to train young scientists who are able to apply concepts and methods from basic biomedical sciences to the study of behavioral phenomenon, such as memory, attention, decision making, and other cognitive functions, behavioral disorders, schizophrenia, alcoholism, aging, and problems with emotion regulation, and basic social phenomenon such as personality, attitudes, and social cognition. This training program provides benefits to trainees who are interested in research crossing traditional academic boundaries between psychology and two of the most important and exciting biomedical sciences - neuroscience and genetics. Educational opportunities of this kind are rare, and the unique nature of this training program makes our graduates attractive candidates for top post-doctoral or faculty positions in bio-behavioral programs at other universities. There are also benefits to the fields of neuroscience and genetics research, in which new lines of behavioral investigation are being opened (e.g., the Human Connectome Project, a large part of which is based at Washington University). Finally, through the process of recruiting and training students in research at the """"""""interface of psychology, neuroscience, and genetics,"""""""" the core faculty members of the training program also benefit because the program fosters collaborative research endeavors among the very diverse set of Washington University faculty participating in the training program. This competing renewal application requests support for another 5-year period of training, to continue pre-doctoral support at six trainees per year.

Public Health Relevance

Our successful IPNG training program brings together new groups of researchers and laboratories to address behavioral questions using innovative combinations of biomedical approaches. Perhaps more importantly, it trains a new generation of mainly behavioral scientists who are able to overcome major hurdles in understanding how the brain controls mental function, how genes contribute to understanding the brain, and how both relate to dysfunction due to injury, disease, developmental perturbation, or degeneration. As can be seen from the bio-sketches of the mentors, most are conducting primary research on the neural or genetic underpinnings of specific diseases (e.g., alcoholism, schizophrenia, Alzheimer's), and most of the mentors from the biomedical sciences are physically located at the Washington University Medical School, so all pre-doctoral trainees have the opportunity to become involved in research directly related to human health and disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM081739-08
Application #
8697059
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Singh, Shiva P
Project Start
2007-07-01
Project End
2017-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Washington University
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
McCoy, Matthew J; Paul, Alexander J; Victor, Matheus B et al. (2018) LONGO: an R package for interactive gene length dependent analysis for neuronal identity. Bioinformatics 34:i422-i428
Reddy, Adarsh S; O'Brien, David; Pisat, Nilambari et al. (2017) A Comprehensive Analysis of Cell Type-Specific Nuclear RNA From Neurons and Glia of the Brain. Biol Psychiatry 81:252-264
Sakers, Kristina; Lake, Allison M; Khazanchi, Rohan et al. (2017) Astrocytes locally translate transcripts in their peripheral processes. Proc Natl Acad Sci U S A 114:E3830-E3838
Luking, Katherine R; Neiman, Jamie S; Luby, Joan L et al. (2017) Reduced Hedonic Capacity/Approach Motivation Relates to Blunted Responsivity to Gain and Loss Feedback in Children. J Clin Child Adolesc Psychol 46:450-462
Ouwenga, Rebecca; Lake, Allison M; O'Brien, David et al. (2017) Transcriptomic Analysis of Ribosome-Bound mRNA in Cortical Neurites In Vivo. J Neurosci 37:8688-8705
Michalski, L J; Demers, C H; Baranger, D A A et al. (2017) Perceived stress is associated with increased rostral middle frontal gyrus cortical thickness: a family-based and discordant-sibling investigation. Genes Brain Behav 16:781-789
Di Iorio, Christina R; Carey, Caitlin E; Michalski, Lindsay J et al. (2017) Hypothalamic-pituitary-adrenal axis genetic variation and early stress moderates amygdala function. Psychoneuroendocrinology 80:170-178
Abernathy, Daniel G; Kim, Woo Kyung; McCoy, Matthew J et al. (2017) MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts. Cell Stem Cell 21:332-348.e9
Sheffield, Julia M; Repovs, Grega; Harms, Michael P et al. (2016) Evidence for Accelerated Decline of Functional Brain Network Efficiency in Schizophrenia. Schizophr Bull 42:753-61
Corral-Frías, N S; Pizzagalli, D A; Carré, J M et al. (2016) COMT Val(158) Met genotype is associated with reward learning: a replication study and meta-analysis. Genes Brain Behav 15:503-13

Showing the most recent 10 out of 70 publications