The University of Washington Molecular Medicine Training Program (MMTP) educates Ph.D. students to work at the interface of basic science and medicine, by incorporating elements of medical training into PhD studies. The MMTP builds upon an institutional culture that encourages interdisciplinary science and translational research to create an educational program that successfully combines strong basic science training with a coherent introduction to medicine and medical problem-solving. The goal is to train a new cadre of scientists able to identify important questions in human health and disease and apply cutting-edge experimental strategies to solving these questions, and to this end MMTP training nurtures a dual skill set, as our students receive rigorous training in basic science while mastering the concepts and language of medical science. Training is distinguished by case-based courses, clinical involvement, and dual mentorship of Ph.D. research by a basic scientist and clinician scientist, and a capstone presentation emphasizing medical implications of a student's research project. The MMTP is open to students working toward PhD degrees in basic science departmental or interdisciplinary programs at UW Medical School. A Molecular Medicine Graduate Certificate is awarded at the time of the PhD to recognize the supplementary coursework and training fulfilled by MMTP trainees. The MMTP has launched new courses in Molecular Medicine;established a strong programmatic identity within the University of Washington and the Seattle research communities;and promoted the field of molecular medicine by targeted outreach activities. Students completing this highly interdisciplinary training program have the intellectual tools and the experience in clinical environments to create new, imaginative, and comprehensive solutions to major issues in medicine, and they are thus prepared to become the new generation of leaders in molecular medicine and translational research.

Public Health Relevance

Narrative The University of Washington Molecular Medicine Training Program (MMTP) educates Ph.D. students to work at the interface of basic science and medicine, by incorporating elements of medical training into PhD studies. This provides them with the ability to identify and solve important problems in medical science, and will lead to improved diagnosis and treatment of human diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Hagan, Ann A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
James, Charlotte A; Yu, Krystle K Q; Gilleron, Martine et al. (2018) CD1b Tetramers Identify T Cells that Recognize Natural and Synthetic Diacylated Sulfoglycolipids from Mycobacterium tuberculosis. Cell Chem Biol 25:392-402.e14
Keller, Rachel B; Tran, Thao T; Pyott, Shawna M et al. (2018) Monoallelic and biallelic CREB3L1 variant causes mild and severe osteogenesis imperfecta, respectively. Genet Med 20:411-419
Faber, Chelsea L; Matsen, Miles E; Velasco, Kevin R et al. (2018) Distinct Neuronal Projections From the Hypothalamic Ventromedial Nucleus Mediate Glycemic and Behavioral Effects. Diabetes 67:2518-2529
Dennis, Daniel G; McKay-Fleisch, Jill; Eitzen, Kaila et al. (2017) Normally lethal amino acid substitutions suppress an ultramutator DNA Polymerase ? variant. Sci Rep 7:46535
Su, Wei; Aloi, Macarena S; Garden, Gwenn A (2016) MicroRNAs mediating CNS inflammation: Small regulators with powerful potential. Brain Behav Immun 52:1-8
Jin, Kelly; Hoffman, Jessica M; Creevy, Kate E et al. (2016) Multiple morbidities in companion dogs: a novel model for investigating age-related disease. Pathobiol Aging Age Relat Dis 6:33276
Blakney, Anna K; Little, Adam B; Jiang, Yonghou et al. (2016) In vitro-ex vivo correlations between a cell-laden hydrogel and mucosal tissue for screening composite delivery systems. Drug Deliv 24:582-590
Herman, Jacob A; Toledo, Chad M; Olson, James M et al. (2015) Molecular pathways: regulation and targeting of kinetochore-microtubule attachment in cancer. Clin Cancer Res 21:233-9
Krishnamurty, Akshay T; Pepper, Marion (2014) Inflammatory interference of memory formation. Trends Immunol 35:355-7
Sureka, Kamakshi; Choi, Philip H; Precit, Mimi et al. (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158:1389-1401

Showing the most recent 10 out of 12 publications