Over the past few decades, our knowledge of the mechanisms by which cells interact with drugs and toxins has exploded due to new molecular analysis techniques and the application of genomic methods. Accordingly, the emphasis of graduate education in the disciplines of pharmacology and toxicology needs to shift from a reductionist view to a systems approach in which doctoral students are comprehensively trained so they can formulate a strategy to solve important biological questions not only at the molecular, cellular, and tissue levels but also at the whole-animal level. Systems pharmacology and toxicology describes a field of study that considers the broad view of drug action. A systems approach using in vivo animal models is necessary to establish efficacy, safety and the pharmacodynamic/pharmacokinetic profile of candidate drugs but there is a shortage of students trained in this area. This Systems Pharmacology and Toxicology (SPaT) Program is designed for PhD students in their second year of graduate study pursuing dissertation research projects in the pharmacological sciences. Trainees (2/year for up to 2 years of support) and training faculty (30 mentors and 4 teachers) are drawn from the Graduate Program in Interdisciplinary Biomedical Sciences and the MD/PhD Program. The SPaT program will train students to use an in vivo approach to answering relevant questions in pharmacology and toxicology with emphasis on metabolism, drug design, pharmacodynamics, pharmacokinetics, and signaling. The rationale for SPaT is that this type of training provides students with a much broader perspective on pharmacology and toxicology that better prepares them to be leaders of multi-disciplinary research teams in the pharmacological sciences. We will integrate SPaT into PhD training programs already active at our graduate training sites in the Little Rock area that include faculty/scientists in the Colleges of Medicine, Pharmacy, and Public Health on the UAMS, the Arkansas Children's Hospital campus, and at the Food and Drug Administration-funded National Center for Toxicological Research. The unique focus of SPaT is training with in vivo systems pharmacological and toxicological approaches and concepts. The objective of SPaT is to provide in vivo pharmacology and toxicology training that complement the cellular and molecular training that students receive in their home programs. The training program consists of didactic training in pharmacology, toxicology, physiology, pharmacokinetics, metabolism, biostatistics, grant writing, and the Responsible Conduct of Research along with laboratory research using an in vivo model of human disease. The SPaT program will also provide strong mentoring, extensive networking, and teaching and leadership opportunities for its trainees through its programmatic activities.

Public Health Relevance

This Systems Pharmacology and Toxicology (SPaT) Program is designed for PhD students pursuing dissertation research projects in the pharmacological sciences at the University of Arkansas for Medical Sciences. A systems approach using in vivo animal models is necessary to establish efficacy, safety and the pharmacodynamic/pharmacokinetic profile of candidate drugs but there is a shortage of students trained in this area.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM106999-08
Application #
9944564
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Koduri, Sailaja
Project Start
2013-07-01
Project End
2023-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
8
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Arkansas for Medical Sciences
Department
Pharmacology
Type
Schools of Medicine
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Meeker, Daniel G; Wang, Tengjiao; Harrington, Walter N et al. (2018) Versatility of targeted antibiotic-loaded gold nanoconstructs for the treatment of biofilm-associated bacterial infections. Int J Hyperthermia 34:209-219
Watt, James; Alund, Alexander W; Pulliam, Casey F et al. (2018) NOX4 Deletion in Male Mice Exacerbates the Effect of Ethanol on Trabecular Bone and Osteoblastogenesis. J Pharmacol Exp Ther 366:46-57
Hay, Charles E; Gonzalez 3rd, Guillermo A; Ewing, Laura E et al. (2018) Development and testing of AAV-delivered single-chain variable fragments for the treatment of methamphetamine abuse. PLoS One 13:e0200060
Harrill, Alison H; Lin, Haixia; Tobacyk, Julia et al. (2018) Mouse population-based evaluation of urinary protein and miRNA biomarker performance associated with cisplatin renal injury. Exp Biol Med (Maywood) 243:237-247
Sarimollaoglu, Mustafa; Stolarz, Amanda J; Nedosekin, Dmitry A et al. (2018) High-speed microscopy for in vivo monitoring of lymph dynamics. J Biophotonics 11:e201700126
Miousse, Isabelle R; Tobacyk, Julia; Melnyk, Stepan et al. (2017) One-carbon metabolism and ionizing radiation: a multifaceted interaction. Biomol Concepts 8:83-92
Hambuchen, Michael D; Hendrickson, Howard P; Gunnell, Melinda G et al. (2017) The pharmacokinetics of racemic MDPV and its (R) and (S) enantiomers in female and male rats. Drug Alcohol Depend 179:347-354
Sims, Clark R; Singh, Sharda P; Mu, Shengyu et al. (2017) Rolipram Improves Outcome in a Rat Model of Infant Sepsis-Induced Cardiorenal Syndrome. Front Pharmacol 8:237
Parajuli, Nirmala; Shrum, Stephen; Tobacyk, Julia et al. (2017) Renal cold storage followed by transplantation impairs expression of key mitochondrial fission and fusion proteins. PLoS One 12:e0185542
Alund, Alexander W; Mercer, Kelly E; Pulliam, Casey F et al. (2017) Partial Protection by Dietary Antioxidants Against Ethanol-Induced Osteopenia and Changes in Bone Morphology in Female Mice. Alcohol Clin Exp Res 41:46-56

Showing the most recent 10 out of 22 publications