The University of Southern California (USC) Training Program in Developmental Biology, Stem Cells, and Regeneration (DSCR) provides graduate students with unified training in mechanistic studies of fundamental developmental processes combined with training in the biology and application of stem cell technology. A distinguishing theme of this program is the incorporation of clinical and translational science into the curriculum of students in the DSCR track, based on the premise that strong basic science graduate training can and should be coupled with an appropriately structured exposure to clinical and translational science in a way that will better train the next generation of scientists to be able to realize the clinical and therapeutic potential of developmental biology discoveries. The faculty of this program includes a balanced mix of full, associate, and assistant professors from several USC schools and campuses. These faculty members have proven records of graduate student training, a long history of collaborative research, and approximately half hold clinical degrees and are active clinical translational scientists. The DSCR Program draws students primarily from a highly successful USC interdepartmental graduate student recruitment and first year of studies program (PIBBS;Programs in Biological and Biomedical Sciences);this outstanding cohort of students comes from diverse backgrounds, and includes a prominent representation of training-grant-eligible underrepresented minority students. Predoctoral students are supported by the PIBBS program in their first year of graduate studies, during which they take core classes and do research laboratory rotations. Three new students per year enter the training program at the beginning of their second year, and are supported for two years. Specialized courses and additional program functions provide a rigorous and diverse training experience for students to realize the full potential of the convergent fields of developmental biology, stem cell biology, and regenerative medicine. PROJECT NARRATIVE: Many of the most intractable diseases of our day result from a failure of the body to regenerate damaged tissue. Studies of basic developmental biological mechanisms, combined with an understanding of stem cell biology and differentiation, may lead to novel approaches to treat these diseases.
Many of the most intractable diseases of our day result from a failure of the body to regenerate damaged tissue. Studies of basic developmental biological mechanisms, combined with an understanding of stem cell biology and differentiation, may lead to novel approaches to treat these diseases.
Moon, Byoung-San; Bai, Jinlun; Cai, Mingyang et al. (2018) Kruppel-like factor 4-dependent Staufen1-mediated mRNA decay regulates cortical neurogenesis. Nat Commun 9:401 |
Lindström, Nils O; McMahon, Jill A; Guo, Jinjin et al. (2018) Conserved and Divergent Features of Human and Mouse Kidney Organogenesis. J Am Soc Nephrol 29:785-805 |
Nguyen, Lisa; Wang, Zheng; Chowdhury, Adnan Y et al. (2018) Functional compensation between hematopoietic stem cell clones in vivo. EMBO Rep 19: |
Lindström, Nils O; Tran, Tracy; Guo, Jinjin et al. (2018) Conserved and Divergent Molecular and Anatomic Features of Human and Mouse Nephron Patterning. J Am Soc Nephrol 29:825-840 |
Salva, Joanna E; Merrill, Amy E (2017) Signaling networks in joint development. Dev Dyn 246:262-274 |
Smeeton, Joanna; Askary, Amjad; Crump, J Gage (2017) Building and maintaining joints by exquisite local control of cell fate. Wiley Interdiscip Rev Dev Biol 6: |
Ye, Shoudong; Zhang, Tao; Tong, Chang et al. (2017) Depletion ofTcf3andLef1maintains mouse embryonic stem cell self-renewal. Biol Open 6:511-517 |
Andrews, Madeline G; Del Castillo, Lorenzo M; Ochoa-Bolton, Eliana et al. (2017) BMPs direct sensory interneuron identity in the developing spinal cord using signal-specific not morphogenic activities. Elife 6: |
Neben, Cynthia L; Lay, Fides D; Mao, Xiaojing et al. (2017) Ribosome biogenesis is dynamically regulated during osteoblast differentiation. Gene 612:29-35 |
Zhou, Xingliang; Chadarevian, Jean Paul; Ruiz, Bryan et al. (2017) Cytoplasmic and Nuclear TAZ Exert Distinct Functions in Regulating Primed Pluripotency. Stem Cell Reports 9:732-741 |
Showing the most recent 10 out of 25 publications