This is a first renewal application for a pre- and postdoctoral training program, the title and theme of which is ?Understanding Cardiovascular Disease Mechanisms?. The University of Cincinnati and Children?s Hospital has a renowned legacy spanning more than 4 decades of previous NIH T32 support for cardiovascular study, and this current T32 represents the only CV program in Cincinnati. Our collective 18 faculty in this renewal have placed 238 of their past trainees into academics over their careers, 153 of whom have run, or currently run independent research programs. In the past 4 years of this program, our 17 trainees published 43 papers and 5 received independent grant funding during their support period, while 5 graduates have matriculated to jobs in scientific careers. The overall scientific emphasis of our training program will continue to build from a basic platform of cardiovascular physiology, cell biology, biochemistry and pharmacology, but will also incorporate the latest approaches in biomedical research, as well as incorporating clinical and translational approaches. The cardiovascular environment at Cincinnati Children?s and the University of Cincinnati is considered one of the very best in the country. Our 18 TG faculty are all NIH funded (some 47 NIH funding components amongst them as PI status), 165 collaborative papers published together, and they are employing the very latest technologies and approaches with outstanding core support. The leadership consists of the co- PIs Drs. Evangelia Kranias and Jeffery Molkentin, both of whom have a long track record of working together (20 years), as well as having excellent mentorship credentials. The Executive Committee (2 members), Internal Advisory Committee (4 members) and External Advisory Committee (3 members) are highly engaged cardiovascular researchers who will continue to help ensure the quality of the training program. The renewal requests continuation of the funding of 3 pre- and 3 postdoctoral trainee positions. Predocs are selected by the Internal Advisory Committee from a vast and outstanding pool of candidates amongst 7 departmental graduate programs, while postdoctoral candidates are selected based on being accepted into a mentor?s laboratory and then passing the screening process by the Internal Advisory Committee and co-PIs. The mentoring program and evaluation process for the program are highly structured and oversight occurs on many levels. Trainees and mentors are evaluated every 6 months with IDPs processing. The proposed educational training curriculum is highly structured and state-of-the-art. Recruitment of minorities has been successful in the past with our faculty, and it will remain a top priority.

Public Health Relevance

Heart disease remains the leading cause of death and disability in the western world. This proposed renewal training grant application will again focus on this theme, and our collective 18 faculty members have made this their life?s work. The program will train the highest quality of young scientists in cardiovascular research, who will be the future leaders in developing better therapy and treatment for this devastating condition.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
2T32HL125204-06A1
Application #
10009722
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Wang, Wayne C
Project Start
2014-12-01
Project End
2025-05-31
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Viswanathan, Shiv Kumar; Puckelwartz, Megan J; Mehta, Ashish et al. (2018) Association of Cardiomyopathy With MYBPC3 D389V and MYBPC3?25bpIntronic Deletion in South Asian Descendants. JAMA Cardiol 3:481-488
Liu, Guan-Sheng; Gardner, George; Adly, George et al. (2018) A novel human S10F-Hsp20 mutation induces lethal peripartum cardiomyopathy. J Cell Mol Med :
Bidwell, Philip A; Haghighi, Kobra; Kranias, Evangelia G (2018) The antiapoptotic protein HAX-1 mediates half of phospholamban's inhibitory activity on calcium cycling and contractility in the heart. J Biol Chem 293:359-367
Liu, Guan-Sheng; Zhu, Hongyan; Cai, Wen-Feng et al. (2018) Regulation of BECN1-mediated autophagy by HSPB6: Insights from a human HSPB6S10F mutant. Autophagy 14:80-97
Davis, Jennifer A; Koenig, Andrew L; Lubert, Allison et al. (2018) ETS transcription factor Etsrp / Etv2 is required for lymphangiogenesis and directly regulates vegfr3 / flt4 expression. Dev Biol 440:40-52
Bidwell, Philip A; Liu, Guan-Sheng; Nagarajan, Narayani et al. (2018) HAX-1 regulates SERCA2a oxidation and degradation. J Mol Cell Cardiol 114:220-233
Melchior, John T; Walker, Ryan G; Cooke, Allison L et al. (2017) A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state. Nat Struct Mol Biol 24:1093-1099
Pollak, Adam J; Haghighi, Kobra; Kunduri, Swati et al. (2017) Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia. Proc Natl Acad Sci U S A 114:9098-9103
Schwanekamp, Jennifer A; Lorts, Angela; Sargent, Michelle A et al. (2017) TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS One 12:e0181945
Schafer, Allison E; Blaxall, Burns C (2017) G Protein Coupled Receptor-mediated Transactivation of Extracellular Proteases. J Cardiovasc Pharmacol 70:10-15

Showing the most recent 10 out of 25 publications