We propose to establish a new interdisciplinary research training program in Computational Biology as a collaborative effort between MIT, the Whitehead Institute, and the Broad Institute. The goal of this program is to train computer science students to be effective interdisciplinary scientists, working as team members with biologists to develop new algorithms, tools, and approaches for analyzing experimental biological data and expressing this analysis in the form of principled predictive models. The program faculty will consist of five MIT EECS faculty in Computer Science, four MIT/Whitehead faculty members in Biology, and the head the MIT Broad Institute. The major research disciplines of this program include: the development of new approaches and algorithms for the analysis of data from biological experiments, approaches for the principled design of biological experiments based upon past data, the construction of computational models that explain complex biological phenomenon, and the development of approaches for interpreting clinical data relevant to human health and disease. It is proposed that four pre-doctoral trainees be supported in this program. We have been running an informal training program in this area for over three years, and our students to date have made substantial contributions to the field. Among our recent graduates are faculty at Stanford, Princeton, Duke, and CMU. Our pool of applicants is unusually strong, with 574 applicants in 2004 in the relevant sub-area of computer science. Trainees in our proposed research training program will have a very rigorous technical and quantitative foundation from the MIT graduate program in Computer Science, combined formal interdisciplinary course work and a co mentorship arrangement between a Computer Science and a Biology faculty member. The strong technical skills present in our pre-doctoral students have provided an excellent foundation for the creation of ground breaking new approaches and algorithms in computational biology. In addition, we have run off-site interdisciplinary summer retreats for the past three years that have been very effective at catalyzing productive pre-doctoral research.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Interdisciplinary Research Training Award (T90)
Project #
5T90DK070069-04
Application #
7269487
Study Section
Special Emphasis Panel (ZDK1-GRB-3 (O1))
Program Officer
Bishop, Terry Rogers
Project Start
2004-09-30
Project End
2009-07-31
Budget Start
2007-08-01
Budget End
2008-07-31
Support Year
4
Fiscal Year
2007
Total Cost
$136,349
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Internal Medicine/Medicine
Type
Schools of Arts and Sciences
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Williams, Amy L; Housman, David E; Rinard, Martin C et al. (2010) Rapid haplotype inference for nuclear families. Genome Biol 11:R108
Jones, Thouis R; Carpenter, Anne E; Lamprecht, Michael R et al. (2009) Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci U S A 106:1826-31
Jones, Thouis R; Kang, In Han; Wheeler, Douglas B et al. (2008) CellProfiler Analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformatics 9:482
Menke, Matthew; Berger, Bonnie; Cowen, Lenore (2008) Matt: local flexibility aids protein multiple structure alignment. PLoS Comput Biol 4:e10
Carpenter, Anne E; Jones, Thouis R; Lamprecht, Michael R et al. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100