Success in treatment of anthrax is critically dependent on rapid diagnosis. As a consequence, there is an acute need for diagnostic tools that can be used in a first responder clinical setting where anthrax will be initially encountered. Detection of microbial antigens in body fluids is a proven technology in diagnosis of infectious disease. Bacillus anthracis is surrounded by an anti-phagocytic capsule that is composed of poly-y-D-glutamic acid (PGA), raising the possibility than immunoassay for PGA could be a means for early, specific, rapid and inexpensive diagnosis of anthrax. To date, development of an immunoassay for PGA has been hampered by the poor immunogenicity of PGA and the complete absence of information regarding production of PGA in vivo. In preliminary experiments, high affinity monoclonal antibodies (mAbs) reactive with PGA were produced and used to construct an immunoassay for PGA. The assay has an extraordinarily high sensitivity, with a lower limit near 100 pg/ml. The immunoassay was used to assess PGA antigenemia in a murine model of inhalation anthrax. The results showed that the initial presence of detectable PGA in blood coincided with the occurrence of detectable bacteremia. Full bacteremia was accompanied by a massive antigenemia with antigen titers as high as 1/5,000,000 48 h after infection.
Six specific aims are proposed: i) to identify the immunochemical variables that influence the performance of immunoassay for PGA, ii) to evaluate the efficacy of an immunoassay for diagnosis and assessment of prognosis and treatment in a murine model of inhalation anthrax, iii) to assess tissue distribution and pharmacokinetics for clearance of PGA in vivo, iv) to develop, in cooperation with a private sector partner, a prototype """"""""potential ultimate product"""""""" for antigen detection in anthrax, v) to determine the specificity of a PGA-based immunoassay for anthrax, and iv) to evaluate the efficacy of PGA immunoassay a non-human primate model of anthrax. This is a translational study that has the potential to dramatically impact diagnosis and treatment of anthrax. The study takes advantage of a library of PGA mAbs that is already in hand and optimizes a proven technology for use with PGA, a heretofore understudied class of microbial antigens. The overall goal is production of a prototype immunoassay for PGA that can be used in a first responder clinical setting where anthrax will be initially encountered. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01AI061200-03
Application #
7163709
Study Section
Special Emphasis Panel (ZAI1-AR-M (M1))
Program Officer
Zou, Lanling
Project Start
2005-01-15
Project End
2009-12-31
Budget Start
2007-01-01
Budget End
2007-12-31
Support Year
3
Fiscal Year
2007
Total Cost
$543,723
Indirect Cost
Name
University of Nevada Reno
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
146515460
City
Reno
State
NV
Country
United States
Zip Code
89557
Gates-Hollingsworth, Marcellene A; Perry, Mark R; Chen, Hongjing et al. (2015) Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax. PLoS One 10:e0126304
Hubbard, Mark A; Thorkildson, Peter; Welch, William H et al. (2013) Stereo-selective binding of monoclonal antibodies to the poly-?-D-glutamic acid capsular antigen of Bacillus anthracis. Mol Immunol 55:337-44
Boyer, Anne E; Quinn, Conrad P; Hoffmaster, Alex R et al. (2009) Kinetics of lethal factor and poly-D-glutamic acid antigenemia during inhalation anthrax in rhesus macaques. Infect Immun 77:3432-41
AuCoin, David P; Sutherland, Marjorie D; Percival, Ann L et al. (2009) Rapid detection of the poly-gamma-D-glutamic acid capsular antigen of Bacillus anthracis by latex agglutination. Diagn Microbiol Infect Dis 64:229-32
Vlassiouk, Ivan; Kozel, Thomas R; Siwy, Zuzanna S (2009) Biosensing with nanofluidic diodes. J Am Chem Soc 131:8211-20
Sutherland, Marjorie D; Kozel, Thomas R (2009) Macrophage uptake, intracellular localization, and degradation of poly-gamma-D-glutamic acid, the capsular antigen of Bacillus anthracis. Infect Immun 77:532-8
Sutherland, Marjorie D; Thorkildson, Peter; Parks, Samuel D et al. (2008) In vivo fate and distribution of poly-gamma-D-glutamic acid, the capsular antigen from Bacillus anthracis. Infect Immun 76:899-906
Kozel, Thomas R; Thorkildson, Peter; Brandt, Suzanne et al. (2007) Protective and immunochemical activities of monoclonal antibodies reactive with the Bacillus anthracis polypeptide capsule. Infect Immun 75:152-63