Dispersion of biological warfare agents has the potential of causing significant morbidity and mortality, and public panic. Thus, further investigation into the treatment and prevention of the detrimental consequences of biological warfare is imperative. The focus of this proposal is food-borne pathogens, particularly category B bacterial pathogens of the Salmonella species and Escherichia coli, and their toxins. Compared with other biological infectious agents, these organisms require less expertise to handle, and by contaminating food products, they have the potential to produce disease outbreaks in large groups of people and over broad geographic regions. These organisms have the potential to spread from the gastrointestinal tract into the blood stream, resulting in bacteremia and endotoxemia, which has devastating consequences in patients. Over the past several years we have been interested in the pathophysiology of endotoxin from Salmonella typhi and Escherichia coli. In recent investigations, we have preliminary data to suggest a naturally occurring compound, distamycin A, may improve outcome in a mouse model of endotoxemia. Distamycin A is known to bind to the minor groove of DNA in AT-rich regions, and its effect occurs in part by disrupting the binding of transcription factors to DNA such as nuclear factor (NF)-kappa B and interferon regulatory factors (IRFs). Our overall hypothesis is that DNA minor groove-binding drugs will suppress the expression of genes that play a critical role in the regulation of inflammation and vascular tone during an endotoxin response, and thus provide a novel therapeutic option for toxins of food-borne pathogens. Thus, the goals of this proposal are: 1) to determine whether drugs that bind to AT-rich regions of the minor groove of DNA improve outcome in mice exposed to endotoxin of the food-borne pathogens, Salmonella typhi and Escherichia coli, 2) to identify specific genes, regulated by DNA minor groove-binding drugs, that contribute to an improved response during endotoxin exposure, and 3) to characterize the mechanisms by which DNA minor groove-binding drugs alter gene expression leading to improved outcome during endotoxin exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01AI061246-05
Application #
7545482
Study Section
Special Emphasis Panel (ZAI1-LR-M (M1))
Program Officer
Baqar, Shahida
Project Start
2004-12-15
Project End
2010-11-30
Budget Start
2008-12-01
Budget End
2010-11-30
Support Year
5
Fiscal Year
2009
Total Cost
$420,512
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Baron, Rebecca M; Kwon, Min-Young; Castano, Ana P et al. (2018) Frontline Science: Targeted expression of a dominant-negative high mobility group A1 transgene improves outcome in sepsis. J Leukoc Biol 104:677-689
Sanada, Fumihiro; Kim, Junghyun; Czarna, Anna et al. (2014) c-Kit-positive cardiac stem cells nested in hypoxic niches are activated by stem cell factor reversing the aging myopathy. Circ Res 114:41-55
Chung, Su Wol; Kwon, Min-Young; Kang, Young-Ho et al. (2012) Transforming growth factor-?1 suppression of endotoxin-induced heme oxygenase-1 in macrophages involves activation of Smad2 and downregulation of Ets-2. J Cell Physiol 227:351-60
Fredenburgh, Laura E; Velandia, Margarita M Suárez; Ma, Jun et al. (2011) Cyclooxygenase-2 deficiency leads to intestinal barrier dysfunction and increased mortality during polymicrobial sepsis. J Immunol 187:5255-67
Baron, Rebecca M; Lopez-Guzman, Silvia; Riascos, Dario F et al. (2010) Distamycin A inhibits HMGA1-binding to the P-selectin promoter and attenuates lung and liver inflammation during murine endotoxemia. PLoS One 5:e10656
Hung, Chi-Chih; Liu, Xiaoli; Kwon, Min-Young et al. (2010) Regulation of heme oxygenase-1 gene by peptidoglycan involves the interaction of Elk-1 and C/EBPalpha to increase expression. Am J Physiol Lung Cell Mol Physiol 298:L870-9
Grant, Marianne A; Baron, Rebecca M; Macias, Alvaro A et al. (2009) Netropsin improves survival from endotoxaemia by disrupting HMGA1 binding to the NOS2 promoter. Biochem J 418:103-12
Takamiya, Rina; Hung, Chi-Chih; Hall, Sean R et al. (2009) High-mobility group box 1 contributes to lethality of endotoxemia in heme oxygenase-1-deficient mice. Am J Respir Cell Mol Biol 41:129-35
Chung, Su Wol; Hall, Sean R; Perrella, Mark A (2009) Role of haem oxygenase-1 in microbial host defence. Cell Microbiol 11:199-207
Takamiya, Rina; Baron, Rebecca M; Yet, Shaw-Fang et al. (2008) High mobility group A1 protein mediates human nitric oxide synthase 2 gene expression. FEBS Lett 582:810-4

Showing the most recent 10 out of 14 publications