The threat of nuclear accidents or attacks makes it critical to develop medical countermeasures. Preclinical studies have shown a relation between vascular dysfunction and chronic organ radiation damage, but little is known about the underlying protective mechanisms. Hence, to identify targets for mitigation, research is needed to elucidate pathways involved in radiation-induced vascular dysfunction and vascular protection. Radiation-induced endothelial dysfunction is associated with detrimental alterations in the protein C pathway. Loss of endothelial surface thrombomodulin (Thbd) leads to reduced levels of activated protein C (APC), a critical component in plasma that has anticoagulant and anti-inflammatory properties and that enhances endothelial cell survival. We have previously shown that recombinant APC is an effective mitigator of acute radiation injury when administered 24 h after total-body irradiation in a mouse model. We will further explore the paradigm that the protein C pathway plays a central role in radiation-induced vascular dysfunction and that APC is an effective mitigator of both acute and late radiation toxicity in multiple organs. In vitro studies with wild-type and recombinant APC using irradiated human endothelial cells in culture will determine which structural features of APC and which endothelial APC receptors are critical for enhancing post-radiation endothelial function. In vivo studies with wild-type mice, Thbd-deficient mice, and mice with enhanced vascular responses to radiation in the small intestine, heart and brain?three organ systems critical in the endogenous levels of APC will determine the role of the Thbd?protein C pathway in both the acute and the late delayed response to radiation. Gene expression profiling focused on endothelial cells extracted from mice will identify radiation-induced changes in the translatome and the effects of APC on those gene expression profiles. Plasma samples from the same mice will be used to identify metabolite profiles indicative of radiation injury and reflective of how APC alters host responses. Such metabolic data may lead to novel biomarkers, as well as enlightening us about how radiation and radiomitigation affect various metabolic pathways. In summary, these studies will provide novel insights into mechanisms by which the Thbd?protein C pathway components, i.e., APC and its endothelial receptors, achieve endothelial radiomitigation. Studies of endothelial gene expression profiles will provide insights into which endothelial regulatory systems are significantly altered by radiation and rescued by APC. Basic knowledge from this project will provide key data required for thoughtful development of countermeasures addressing radiation-induced endovascular injury.

Public Health Relevance

In view of the ongoing threat of mass casualties due to radiological accidents or nuclear terrorism, this project aims to investigate the role of the thrombomodulin?protein C pathway, a molecular pathway that plays a central role in the proper function of vascular endothelium, in short- and long-term injury from exposure to radiation. A better understanding of this pathway will provide opportunities to develop safe treatments that reduce injury in critical organs and prolong survival, when administered after radiation exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01AI133561-02
Application #
9497775
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Vedamony, Merriline M
Project Start
2017-06-05
Project End
2022-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Arkansas for Medical Sciences
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
122452563
City
Little Rock
State
AR
Country
United States
Zip Code
72205
Cheema, Amrita K; Byrum, Stephanie D; Sharma, Neel Kamal et al. (2018) Proteomic Changes in Mouse Spleen after Radiation-Induced Injury and its Modulation by Gamma-Tocotrienol. Radiat Res 190:449-463