The Canary Center for Cancer Early Detection at Stanford fosters research programs based on the hypothesis that effective early cancer detection and management will require a combination of blood and molecular imaging tests. The center is bringing together physicians and scientists that work in the areas of in vitro and in vivo diagnostics to advance cancer patient care with an initial focus on lung, ovarian, pancreatic and prostate cancers. PSA testing currently serves as the cornerstone for prostate cancer screening and management. However, because PSA suffers from imperfect sensitivity and specificity, prostate cancer is frequently under- and over- diagnosed, resulting in missed cancers and unnecessary biopsies. Better methods are needed to accurately detect prostate cancer, and to determine its capacity for progression. This proposal leverages strengths at the Schools of Medicine and Engineering at Stanford University, the Stanford Cancer Center, the Canary Foundation, and the National Cancer Institute, including a center for cancer nanotechnology excellence (CCNE) U54 and an in vivo cellular and molecular imaging center (ICMIC) P50. We also form important links to faculty at the Fred Hutchinson Cancer Center. In this proposal we outline two distinct and complementary strategies for applying cutting edge technologies to the dual approach for the detection and management of prostate cancer. In Project #1 we propose the adaptation of our newly-developed magneto-nanosensor to the multiplex analysis of blood-based biomarkers for prostate cancer detection and prognostication. This platform is 1000-fold more sensitive than an ELISA assay, has 64-multiplex capacity, and spans a dynamic range of 6 decades, enabling the interrogation of complex biomarker panels designed for high sensitivity and specificity. In project #2 we propose the adaptation of our latest ultrasound technology using tumor angiogenesis-targeted microbubbles to image prostate cancer. Microbubbles are gaseous bubbles encased by lipid shells functionalized with antibodies that target tumor-associated angiogenesis. When introduced into the bloodstream before imaging, VEGFR2-targeted microbubbles bind to the endothelial cells of the tumor neovasculature to provide enhanced contrast during ultrasound. Incorporated into TRUS (transrectal ultrasound), this approach will increase the accuracy of detection during the screening process. Our long-term goal is to combine our blood-based biomarker and imaging approaches to the accurate early detection and prognostication of prostate cancer.

Public Health Relevance

Our proposed work will improve cun'ent prostate cancer screening methods by increasing the accuracy of detection and prognosis, and reducing the numbers of unnecessary surgeries. Prostate cancer patients will initially benefit and then the strategies employed will be able to help other cancer patients as well.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
3U01CA152737-05S1
Application #
9133739
Study Section
Special Emphasis Panel (ZCA1-SRLB-C (M1))
Program Officer
Mazurchuk, Richard V
Project Start
2010-09-21
Project End
2016-06-30
Budget Start
2014-07-01
Budget End
2016-06-30
Support Year
5
Fiscal Year
2015
Total Cost
$112,120
Indirect Cost
$41,233
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Gong, Xue; Siprashvili, Zurab; Eminaga, Okyaz et al. (2017) Novel lincRNA SLINKY is a prognostic biomarker in kidney cancer. Oncotarget 8:18657-18669
Brooks, James D; Wei, Wei; Pollack, Jonathan R et al. (2016) Loss of Expression of AZGP1 Is Associated With Worse Clinical Outcomes in a Multi-Institutional Radical Prostatectomy Cohort. Prostate 76:1409-19
Barbosa, Philip V; Thomas, I-Chun; Srinivas, Sandy et al. (2016) Overall Survival in Patients with Localized Prostate Cancer in the US Veterans Health Administration: Is PIVOT Generalizable? Eur Urol 70:227-30
van de Ven, Stephanie M W Y; Bemis, Kyle D; Lau, Kenneth et al. (2016) Protein biomarkers on tissue as imaged via MALDI mass spectrometry: A systematic approach to study the limits of detection. Proteomics 16:1660-9
Mastanduno, Michael A; Gambhir, Sanjiv S (2016) Quantitative photoacoustic image reconstruction improves accuracy in deep tissue structures. Biomed Opt Express 7:3811-3825
Tretiakova, M S; Wei, W; Boyer, H D et al. (2016) Prognostic value of Ki67 in localized prostate carcinoma: a multi-institutional study of >1000 prostatectomies. Prostate Cancer Prostatic Dis 19:264-70
Jokerst, Jesse V; Chen, Zuxiong; Xu, Lingyun et al. (2015) A Magnetic Bead-Based Sensor for the Quantification of Multiple Prostate Cancer Biomarkers. PLoS One 10:e0139484
Brooks, James D; Wei, Wei; Hawley, Sarah et al. (2015) Evaluation of ERG and SPINK1 by Immunohistochemical Staining and Clinicopathological Outcomes in a Multi-Institutional Radical Prostatectomy Cohort of 1067 Patients. PLoS One 10:e0132343
Henriksen, Anders Dahl; Wang, Shan Xiang; Hansen, Mikkel Fougt (2015) On the importance of sensor height variation for detection of magnetic labels by magnetoresistive sensors. Sci Rep 5:12282
Troyer, Dean A; Jamaspishvili, Tamara; Wei, Wei et al. (2015) A multicenter study shows PTEN deletion is strongly associated with seminal vesicle involvement and extracapsular extension in localized prostate cancer. Prostate 75:1206-15

Showing the most recent 10 out of 19 publications