Prostaglandin signaling pathway plays an important role in colon tumorigenesis. Inhibition of COX-2 with resultant decreased levels of prostaglandin E2 (PGE2) is a key mechanism underlying the colon chemo- preventive effects of non-steroidal anti-inflammatory drugs (NSAIDs). 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a downstream metabolic antagonist of COX-2, has recently been established as a novel colon neoplasia suppressor. NSAIDs exert anti-neoplastic effects through a 'sandwiched' manner on the PGE2 pathway by concomitant suppression of COX-2 and up-regulation of 15-PGDH. Emerging evidence suggests that vitamin D also exerts anti-neoplastic effects through its actions on the PGE2 signaling pathway by down- regulating COX-2, up-regulating 15-PGDH, and inhibiting EP1-EP4, the receptors for PGE2. We have shown in a colon adenoma prevention trial that individuals who developed new adenomas while receiving celecoxib also had low colonic 15-PGDH expression levels. Furthermore, we have recently identified a SNP in the promoter region of 15-PGDH gene that is associated with both an increased risk of colon cancer and decreased colonic tissue expression of 15-PGDH in humans. These lead to our central hypothesis that 15-PGDH is a susceptibility gene for human colon neoplasia, and NSAIDs and circulating levels of vitamin D may interact with 15-PGDH to impact colon tumorigenesis. This proposal builds upon the PLCO trial and an established colon screening population in Cleveland, where normal colonic tissues from a subset of cases and controls are readily available. Specifically, Aim 1 uses a 3-stage design (discovery, tissue expression validation, and replication) to interrogate the entire 15-PGDH gene locus (spanning 100kb upstream and downstream) for colorectal neoplasia predisposing genetic variants of 15-PGDH.
Aim 2 examines PE2 signaling pathway key gene expression levels in normal colonic tissues from a set of 309 adenoma cases and 327 controls, and assesses their associations with risk of colorectal adenoma.
Aim 3 synthesizes SNP, gene expression, and exposure data to assess the joint effects of 15-PGDH, NSAIDs, and serum levels of vitamin D on risk of colorectal neoplasia. Our proposed study will provide novel insight into the etiological role of 15-PGDH in colon carcinogenesis, and will inform individualized strategies to maximize the 15-PGDH dependent chemoprevention effects of NSAIDs and vitamin D, and minimize the adverse gastrointestinal and cardiac effects that have thus far hampered population-wide use of NSAIDs for chemoprevention.

Public Health Relevance

This study, building upon the large PLCO screening arm population and a Cleveland colonoscopy screening cohort, addresses the hypothesis that 15-PGDH is a novel susceptibility gene for human colon neoplasia, and genetic variants and tissue expression levels of 15-PGDH may work jointly with non-steroidal anti-inflammatory drug use (NSAIDs) and circulating levels of vitamin D to impact the development of early colorectal neoplasia.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Zhu, Claire
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Family Medicine
Schools of Medicine
United States
Zip Code
Cooper, Gregory S; Markowitz, Sanford D; Chen, Zhengyi et al. (2018) Evaluation of Patients with an Apparent False Positive Stool DNA Test: The Role of Repeat Stool DNA Testing. Dig Dis Sci 63:1449-1453
Toth, Reka; Scherer, Dominique; Kelemen, Linda E et al. (2017) Genetic Variants in Epigenetic Pathways and Risks of Multiple Cancers in the GAME-ON Consortium. Cancer Epidemiol Biomarkers Prev 26:816-825
Noy, Noa; Li, Li; Abola, Matthew V et al. (2015) Is retinol binding protein 4 a link between adiposity and cancer? Horm Mol Biol Clin Investig 23:39-46
Li, Wan; Wang, Qi-Long; Liu, Xia et al. (2015) Combined use of vitamin D3 and metformin exhibits synergistic chemopreventive effects on colorectal neoplasia in rats and mice. Cancer Prev Res (Phila) 8:139-48
Abola, Matthew V; Thompson, Cheryl L; Chen, Zhengyi et al. (2015) Serum levels of retinol-binding protein 4 and risk of colon adenoma. Endocr Relat Cancer 22:L1-4