This project seeks to address several major areas identified in this U01 program. The proposed, highly stable 3-nm ultra-fine iron oxide nanoparticle (uIONP) platform is the next generation of magnetic nanoparticles with the smallest size of its kind for enhanced tumor penetration and retention and the largest per unit surface areas for drug loading. Its novel T1/T2 dual-contrast is switchable depending on its compartmentalization, e.g., dispersed in vessels and self-assembled in tumors, which enables report of the systemic drug delivery process via MRI. The combination of developed uIONPs with the newly developed anti-fouling stealth coating technology and new strategy of targeting both the tumor microenvironment (stroma) and cancer cells will allow us to investigate nanoparticle delivery mechanisms and their implications on therapeutic responses. More importantly targeted theranostic uIONPs carrying anti-cancer agents can overcome the challenge and failure of current therapies in treating pancreatic cancer by breaking the tumor's physiological barriers in stroma and disrupt the tumor microenvironment, leading to improved cancer molecular targeting and targeted drug delivery. The proposed investigation and development of a stroma-breaking theranostic uIONP platform will profoundly change the current nanomaterials' poor efficiency when delivering drugs into fibrotic human cancers, especially pancreatic cancer which is the worst cancer type for drug delivery due to a high content of dense fibrotic tumor stromal and extracellular matrix. With our new understanding of pancreatic cancer biology and expertise in image-guided theranostic IONP delivery systems, in Aim 1 we will develop and characterize dual contrast theranostic uIONPs with stealth antifouling coating (uIONP) that is functionalized with a new uPAR targeting ligand containing the fused peptide of the amino terminal fragment of uPA and the catalytic domain of MMP14 (ATFmmp), and IGF-1 to simultaneously target two cellular receptors, uPAR and IGF- 1R, co-expressed in tumor cells and tumor associated fibroblasts and macrophages.
Aim 2 will investigate and determine the stroma breaking ability and efficiency of targeted delivery of ATFmmp-IGF-uIONP in vivo. Developed ATFmmp-IGF-uIONP (alone or with drugs) should be able to extravasate from leaky tumor blood vessels easier and faster than larger IONPs, break extracellular matrix and destroy stromal cells to reach cancer cells, followed by cell receptor-mediated internalization. We will examine the efficiency of targeted delivery and intratumoral distribution of the uIONP in orthotopic human pancreatic cancer patient tissue- derived xenograft (PDX) and transgenic mouse pancreatic tumor models using MR and optical imaging in vivo, multiphoton microscopy ex vivo, and histological and chemical analyses in vitro.
In Aim 3, we will determine the improvement in the therapeutic effect and capability of MRI-guided delivery of stroma-breaking theranostic uIONPs carrying cisplatin alone first, and then combined with SN38, which is a camptothecin analogue, as a combination therapy against drug resistance in human pancreatic cancer PDX models.

Public Health Relevance

The objective of the proposed research project is to develop novel tumor targeted nanoparticles with enhanced drug delivery capabilities into tumor cells by destroying barriers created by tumor associated cells and collagen fibers. New magnetic resonance (MR) imaging methods will be developed to detect nanoparticle-drug delivery into tumor cells. Demonstration of increased drug delivery and enhanced therapeutic effect using the new imageable nanoparticle-drugs in human pancreatic cancer patient tissue-derived tumor models in mice will likely have a significant impact on the effective treatment of pancreatic cancer as well as other stroma-rich cancers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01CA198913-05
Application #
9750645
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Liu, Christina
Project Start
2015-08-28
Project End
2020-07-31
Budget Start
2019-08-01
Budget End
2020-07-31
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Emory University
Department
Surgery
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Li, Yuancheng; Xu, Yaolin; Fleischer, Candace C et al. (2018) Impact of Anti-Biofouling Surface Coatings on the Properties of Nanomaterials and Their Biomedical Applications. J Mater Chem B 6:9-24
Miller-Kleinhenz, Jasmine; Guo, Xiangxue; Qian, Weiping et al. (2018) Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials 152:47-62
Zhu, Lei; Zhou, Zhiyang; Mao, Hui et al. (2017) Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 12:73-87
Zhu, Lei; Staley, Charles; Kooby, David et al. (2017) Current status of biomarker and targeted nanoparticle development: The precision oncology approach for pancreatic cancer therapy. Cancer Lett 388:139-148
Gao, Ning; Bozeman, Erica N; Qian, Weiping et al. (2017) Tumor Penetrating Theranostic Nanoparticles for Enhancement of Targeted and Image-guided Drug Delivery into Peritoneal Tumors following Intraperitoneal Delivery. Theranostics 7:1689-1704
Wang, Liya; Huang, Jing; Chen, Hongbo et al. (2017) Exerting Enhanced Permeability and Retention Effect Driven Delivery by Ultrafine Iron Oxide Nanoparticles with T1-T2 Switchable Magnetic Resonance Imaging Contrast. ACS Nano 11:4582-4592
Pelaz, Beatriz; Alexiou, Christoph; Alvarez-Puebla, Ramon A et al. (2017) Diverse Applications of Nanomedicine. ACS Nano 11:2313-2381
Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M et al. (2016) IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer. Proc SPIE Int Soc Opt Eng 9836:
Chen, Wei; Yang, Lily (2016) Targeted Delivery with Imaging Assessment of siRNA Expressing Nanocassettes into Cancer. Methods Mol Biol 1372:49-59
Wang, Guohao; Zhang, Fan; Tian, Rui et al. (2016) Nanotubes-Embedded Indocyanine Green-Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy. ACS Appl Mater Interfaces 8:5608-17

Showing the most recent 10 out of 15 publications