Lung cancer is the leading cause of cancer deaths worldwide. The most prevalent type of lung cancer is Non- Small Cell Lung Cancer (NSCLC). In NSCLC, KRAS is one of the most frequently mutated oncogenes and yet there are currently no KRAS specific therapeutic approaches. The goal of this application is to implement a collaborative effort involving proteomics, combinatorial genetics (CRISPR/CAS9 screens), and mouse modeling (genetically engineered and human-in-mouse models) to identify and validate novel strategies to target KRAS specifically in NSCLC. We hypothesize that focused screens informed by the context (tissue of origin and secondary genetic changes) of oncogenic KRAS activity are likely to yield novel KRAS vulnerabilities. Given that KRAS acts through multiple, parallel downstream effectors, we also hypothesize that the search for vulnerabilities should emphasize (1) combinatorial effects, and (2) a careful analysis of protein-protein interactions in the Ras pathway. The proteomic analysis proposed here will use as a starting point previously identified and validated KRAS synthetic vulnerabilities.
In Aim 1, we will utilize affinity purification/ mass spectrometry (AP/MS), to systematically identify oncogenic KRAS protein networks seeded on targets defined by previous synthetic lethal interaction screens. New proteomic technologies will also permit high-resolution identification of KRAS-specific post-translational modifications (PTMs). This work will define a set of high value KSL candidates.
In Aim 2, we deploy a novel genetic interaction map approach to create combinatorial knockout libraries. This approach utilizes a unique version of the CRISPR-CAS9 system that expresses two guide RNAs (sgRNAs) from a single lentivirus. Deep sequencing of sgRNA pairs will identify critical genes that genetically interact with oncogenic KRAS or with components of the KRAS interaction network. Lastly, in Aim 3, we will test the functional significance of combinatorial synthetic lethal interactions using two approaches. First, we use 3 mouse models of human cancer that combine KRAS activation with loss of key tumor suppressors (LKB1, p53 or Keap1), thus accounting for a significant fraction of the varieties of KRAS activity in actual human tumors. Second, further validation and human relevance will be determined using a set of well-characterized patient-derived xenografts. We anticipate that our studies will identify novel strategies for targeting KRAS mutant lung cancer and potentially other cancers in which KRAS mutations are prevalent.

Public Health Relevance

KRAS is a protein that is frequently mutated in human cancer and yet there are no effective ways to treat cancers that carry this abnormality. We will use advanced screening techniques to identify new ways to target cancers that carry KRAS mutations. We focus our studies on lung cancer, which is one of the most common forms of cancer in the United States.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Watson, Joanna M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Gwinn, Dana M; Lee, Alex G; Briones-Martin-Del-Campo, Marcela et al. (2018) Oncogenic KRAS Regulates Amino Acid Homeostasis and Asparagine Biosynthesis via ATF4 and Alters Sensitivity to L-Asparaginase. Cancer Cell 33:91-107.e6
Milic, Bojan; Chakraborty, Anirban; Han, Kyuho et al. (2018) KIF15 nanomechanics and kinesin inhibitors, with implications for cancer chemotherapeutics. Proc Natl Acad Sci U S A 115:E4613-E4622
Kanie, Tomoharu; Jackson, Peter K (2018) Guanine Nucleotide Exchange Assay Using Fluorescent MANT-GDP. Bio Protoc 8:
Hess, Gaelen T; Tycko, Josh; Yao, David et al. (2017) Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Mol Cell 68:26-43
Han, Kyuho; Jeng, Edwin E; Hess, Gaelen T et al. (2017) Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol 35:463-474
Hilgendorf, Keren I; Johnson, Carl T; Jackson, Peter K (2016) The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr Opin Cell Biol 39:84-92