Glycosaminoglycans (GAGs) are large, linear, sulfated polysaccharides found in many organisms, including all mammals. Interests in GAG structures stem from GAGs? diverse biological activities in phenomena such as tissue development/regeneration, inflammation, blood coagulation and amyloid plaque formation. In addition to their therapeutic use, GAGs have also been used as biomarkers. Due to complexity and heterogeneity of their structures, GAG sequencing has been difficult, if not impossible. For the last two years, we have been developing a single molecule method to sequence GAGs using recognition tunneling nanopore (RTP). A RTP device is composed of a recognition tunneling junction embedded in a nanopore. It sequentially ?read? a mono- or di- saccharide unit when the sugars form a transient complex with recognition molecules attached to two tunneling electrodes during translocation of a polysaccharide through the nanopore. Advantages of a single molecule method include circumvention of the need to obtain homogeneous samples of GAGs and ability to analyze intact GAG chains, which most of the existing analytical techniques are unable to do. In the R21 phase, we have shown that recognition tunneling (RT) signals from disaccharide building blocks of GAGs possess unique signatures that can be used in distinguishing different stereoisomers. We also improved manufacturing of RTPs and showed that conductance of the RT signals alone was sufficient to determine GAG types. Finally, we demonstrated that GAG chains can translocate solid-state nanopore unaided. However, the speed of translocation is too fast to collect sufficient amount of RT signals of individual structure units. To reduce the translocation speed, we have designed a ?29 DNA polymerase mediated ratcheting mechanism to control the translocation of GAGs conju- gated to a DNA primer. In this application, we will develop such a GAG-ratcheting RTP device for GAG sequenc- ing. In particular, we will complete the following aims: (1) Build a RT reference database for RTP sequencing of GAGs. Using the most up-to-date RTP devices, we will analyze the RT signatures of GAG building blocks teth- ered to nanoparticles. This set-up mimics the conditions during actual sequencing and should produce data that more accurately reflect those collected during sequencing. (2) We will develop a method to fabricate GAG-ratch- eting RTPs. We will immobilize a single ?29 DNA polymerase to the upper rim of the nanopore, so it can perform rolling circle extension using a circular template and a DNA primer whose 5? end is conjugated to the reducing end of the GAG chain to be sequenced. As the ?29 polymerase extends the DNA primer, it will push the GAG chain pass the RT junction at a rate slow enough for RT junction to interact with individual GAG monosaccharide for recording of sufficient electrical signals. Our goal is to complete the two aims in the first two years, allowing us to perform GAG sequencing and cross validation of the device in the final year.

Public Health Relevance

Work proposed here will allow single molecule sequencing of glycosaminoglycan polysaccharides using an electronic chip with a high speed and low cost for the first time. Glycosaminoglycans have important pharmacological properties and are modulators of critical biological phenomena such as tissue development/regeneration and inflammation. Determination of their sequence structures will allow better understanding of how organisms control these physiological events through glycosaminoglycans.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01CA221235-01
Application #
9391489
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Krueger, Karl E
Project Start
2017-08-01
Project End
2020-07-31
Budget Start
2017-08-01
Budget End
2018-07-31
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Arizona State University-Tempe Campus
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
943360412
City
Tempe
State
AZ
Country
United States
Zip Code
85287