Lynch syndrome (LS) is a genetic disease predisposing to colorectal cancer (CRC) that affects more than one million Americans. Germline mutations in DNA mismatch repair (MMR) genes, primarily MLH1 and MSH2, cause deficient DNA mismatch repair (dMMR) and LS. LS CRCs have exceptionally high numbers of small insertion/deletion frameshift and missense mutations. Elevated dMMR mutation rates cause some mutations to recurrently arise in tumors from different patients. For example, the human TGF?R2 gene has a poly(A) coding repeat, and the same ?shared? frameshift mutation is recurrently identified in >60% of LS dMMR CRCs. Here, we will use state of the art tools to systematically delineate recurrent LS mouse and human pre-malignant neoantigens, test whether vaccination with frequently mutated ?shared? immunogenic neoantigens reduces LS mouse CRC penetrance, and elucidate adaptive immune mechanisms for CRC immunoprevention.
In Aim 1 we will comprehensively delineate frequently mutated recurrent neoantigens in Lynch syndrome mouse colorectal mucosa and adenomas. This will provide insights into pre-malignant colon dMMR immunoediting mechanisms, the timing and sequence of dMMR neoantigen appearance, and systematically delineate the most immunogenic recurrent shared dMMR neoantigen vaccine targets for LS mouse CRC immunoprevention.
In Aim 2 we will test the hypothesis that recurrent neoantigen vaccination reduces mouse Lynch syndrome mismatch repair deficient epithelial cells in colon mucosa. This will give insights into the mechanism of dMMR colon mucosal immunoediting, and test the efficacy and safety of a dMMR recurrent neoantigen vaccine strategy using the earliest neoantigen mutations for LS immunoprevention.
In Aim 3, we will test the hypothesis that recurrent neoantigen vaccination reduces mouse Lynch syndrome colorectal tumor burden. This will evaluate the efficacy and safety of a dMMR recurrent adenoma neoantigen vaccine strategy for Lynch syndrome immunoprevention and provide insights into the mechanisms of dMMR immunoediting. Finally, in Aim 4 we will systematically delineate Lynch syndrome patient adenoma recurrent neoantigens. This will delineate the most promising candidate recurrent neoantigens that can be used for LS patient tumor vaccine clinical trials and give insights into dMMR immunoediting mechanisms. Our overall goal is to develop effective, safe mechanism based neoantigen vaccination strategies for Lynch syndrome CRC immunoprevention.

Public Health Relevance

Lynch syndrome is a genetic disease predisposing to colorectal cancer that affects more than one million Americans. Lynch syndrome cancers have exceptionally high numbers of small insertion/deletion frameshift and missense mutations. Our overall goal is to develop effective, safe mechanism based neoantigen vaccination strategies in mice in order to provide a strong foundation for Lynch syndrome colorectal immunoprevention clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01CA233056-03
Application #
10003205
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Miller, Mark S
Project Start
2018-09-30
Project End
2023-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
3
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Weill Medical College of Cornell University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
060217502
City
New York
State
NY
Country
United States
Zip Code
10065