Approximately 3 million Americans and around 24 million people worldwide are affected by Type 1 Diabetes (T1D). Glucose monitoring followed by insulin injection, allogeneic whole organ pancreas transplantation, and allogeneic islet transplantation are the most common treatments for T1D. These treatments can achieve glycemic control for many patients but result in serious complications. A bioartificial pancreas is a promising treatment for T1D because it contains functional islets. However, previous attempts to develop a bioartificial device have been severely limited by insufficient mass transfer and a limited supply of beta cells. Dr. Shuvo Roy (PI) has developed silicon nanopore membranes (SNM) to achieve high-efficiency blood ultrafiltration while selectively retaining specific solutes for the Bioartificial Kidney project and this project's successes are directly transferrable to the implantable bioartificial pancreas (the iBAP). The ultra-high hydraulic permeability characteristic of the SNM will enable appropriate mass transport (especially oxygen, glucose, and insulin) within to achieve optimal beta cell performance, while the ultra-selective pore characteristic of the SNM enable unprecedented immunoisolation. Also the iBAP will utilize a human embryonic stem cell derived fully functional beta cell that provides and unlimited supply of beta cells for iBAP development and clinical translation.

Public Health Relevance

Type 1 Diabetes (T1D) affects over 3 million Americans and incurs a substantial cost to the US health care system. Our multidisciplinary team at the University of California, San Francisco is developing a new implantable bioartificial pancreas (iBAP) that will improve T1D outcomes, increase patient quality of life, and significantly reduce the cost of T1D on the health care system.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01EB025136-03
Application #
9752544
Study Section
Special Emphasis Panel (ZEB1)
Program Officer
Wolfson, Michael
Project Start
2017-09-26
Project End
2021-06-30
Budget Start
2019-07-01
Budget End
2021-06-30
Support Year
3
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Sneddon, Julie B; Tang, Qizhi; Stock, Peter et al. (2018) Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges. Cell Stem Cell 22:810-823
Song, Shang; Roy, Shuvo (2016) Progress and challenges in macroencapsulation approaches for type 1 diabetes (T1D) treatment: Cells, biomaterials, and devices. Biotechnol Bioeng 113:1381-402