Exposure and biological response biomarkers of cigarette smoke. Exposure to tobacco smoke (mainstream and environmental) is a leading cause of death in the US. Cigarette smoke is an extremely complex mixture, which some 3800 constituents including numerous polycyclic aromatic hydrocarbons (PAHs), in both the mainstream and sidestream (environmental) smoke fractions. Cigarette smokers provide an extreme model of PAH exposure that will permit both exposure and biological response biomarkers to be developed. There is substantial evidence that PAHs are causative agents in lung, skin, and bladder cancer. Furthermore, tobacco smoke is associated with oxidative stress, pancreatic cancer, cardiovascular disease, and chronic obstructive pulmonary disease (COPD), although the specific role of PAHs is not clear. Interestingly, the cardiovascular effects of sidestream smoke are almost as great as mainstream smoke. The present proposal stems from significant advances we have made over the last six years in the quantification of protein, lipid, and DNA biomarkers using stable isotope methodology and our basic research into enzyme regulation during oxidative stress. Previous methods for he the analysis of oxidative DNA damage has been fraught with numerous methodological problems so that the current state-of-the-art involves the use of a COMET assay to measure 8-oxo-2'-deoxyguanosine (dGuo) lesions. We have recently devised a more quantitative method based on immunoaffinity stable isotope dilution liquid chromatography- tandem mass spectrometry (LC-MS/MS) that can be readily elaborated to studies of tobacco smokers. We also showed that oxidative stress could induce the formation of aldo-keto reductases (AKRs) of the 1C family. AKR1C3 is the enzyme, which we recently showed is responsible for the conversion of prostaglandin (PG) D2 to the potent bronchoconstrictor 11p-PGF2. This provides an additional potential link between oxidative stress and COPD as well as the potential for a new therapeutic strategy, which involves AKR1C3 inhibition. Finally, preliminary studies have revealed that a DNA-adduct than can only arise from lipid peroxidation is present in the urine of cigarette smokers but is completely absent in urine from non-smokers. We propose to build on these exciting new findings by developing panels of in vivo biomarkers of exposure and biological response, which we hypothesize will make it possible to distinguish a cohort of non-smokers from a cohort of disease-free tobacco smokers. The hypothesis will be tested by conducting research under the following three specific aims:
Aim 1. To discover whether B[a]P and B[a]P-7,8-dione induce AKR1C/2 in NHBE cells and increase oxidative stress to form 8-oxo-dGuo and HedGuo in DNA, induce AKR1C3 in HASM cells and increase the biosynthesis of the potent bronchoconstrictor 11p-PGF2, as potential urine and EEC biological response biomarkers of PAH exposure.
Aim 2 : To discover secreted proteins following treatment of NHBE and HASM cells with B[a]P and its oxidative metabolites as potential serum biological response biomarkers of PAH exposure.
Aim 3 : To conduct predictive and refinement analyses of in vivo exposure and response biomarkers in urine together with biological response biomarkers in EBC and serum in order to distinguish non-smokers from disease-free tobacco smokers. Successful completion of the proposed research will provide a panel of biomarkers of exposure and biological response to tobacco smoke will have significant utility in future studies designed to elucidate the relationship between gene environment interactions and diseases such as cancer, cardiovasculardisease, and COPD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project--Cooperative Agreements (U01)
Project #
3U01ES016004-03S1
Application #
7847893
Study Section
Special Emphasis Panel (ZES1-LKB-E (BR))
Program Officer
Shaughnessy, Daniel
Project Start
2007-08-15
Project End
2009-10-31
Budget Start
2009-06-01
Budget End
2009-10-31
Support Year
3
Fiscal Year
2009
Total Cost
$7,875
Indirect Cost
Name
University of Pennsylvania
Department
Pharmacology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Mesaros, Clementina; Blair, Ian A (2012) Targeted chiral analysis of bioactive arachidonic Acid metabolites using liquid-chromatography-mass spectrometry. Metabolites 2:337-65
Mesaros, Clementina; Arora, Jasbir S; Wholer, Ashley et al. (2012) 8-Oxo-2'-deoxyguanosine as a biomarker of tobacco-smoking-induced oxidative stress. Free Radic Biol Med 53:610-7
Rangiah, Kannan; Shah, Sumit J; Vachani, Anil et al. (2011) Liquid chromatography/mass spectrometry of pre-ionized Girard P derivatives for quantifying estrone and its metabolites in serum from postmenopausal women. Rapid Commun Mass Spectrom 25:1297-307
Bhat, Showket H; Gelhaus, Stacy L; Mesaros, Clementina et al. (2011) A new liquid chromatography/mass spectrometry method for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in urine. Rapid Commun Mass Spectrom 25:115-21
Rangiah, Kannan; Hwang, Wei-Ting; Mesaros, Clementina et al. (2011) Nicotine exposure and metabolizer phenotypes from analysis of urinary nicotine and its 15 metabolites by LC-MS. Bioanalysis 3:745-61
Liu, Xiaojing; Zhang, Suhong; Arora, Jasbir S et al. (2011) 11-Oxoeicosatetraenoic acid is a cyclooxygenase-2/15-hydroxyprostaglandin dehydrogenase-derived antiproliferative eicosanoid. Chem Res Toxicol 24:2227-36
Basu, Sankha S; Blair, Ian A (2011) SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards. Nat Protoc 7:1-12
Basu, Sankha S; Blair, Ian A (2011) Rotenone-mediated changes in intracellular coenzyme A thioester levels: implications for mitochondrial dysfunction. Chem Res Toxicol 24:1630-2
Mesaros, Clementina; Lee, Seon Hwa; Blair, Ian A (2010) Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards. Rapid Commun Mass Spectrom 24:3237-47
Ciccimaro, Eugene; Blair, Ian A (2010) Stable-isotope dilution LC–MS for quantitative biomarker analysis. Bioanalysis 2:311-41

Showing the most recent 10 out of 17 publications