With hundreds of sequenced genomes available for many species, the challenge now lies in building predictive models for the genotype-to-phenotype map. Millions of polymorphic bases make each of us morphologically, intellectually, and psychologically unique. The approach of associating whole-genome polymorphisms with a myriad of phenotypes (GWAS) has been in fashion. Its reliance on purely statistical associations requires screening many thousands of individuals to pinpoint alleles that typically explain appreciable, though modest, fractions of natural variation. The next step - the long term goal of this project - is to move from association to causation; where a model of well-understood molecular pathways is modified, individually for each genotype, to reflect functional effects of it unique set of polymorphisms. We develop the concepts and models necessary to advance this goal using Drosophila, where the molecular tools are precise and quantitative predictions are verifiable. We will develop several levels of predictive models. First, we will predict the functioal consequences of SNPs on gene expression from sequence alone, based on knowledge of transcription factor (TF) binding sites and predictive models of how sequence affects DNA shape. These models will be validated with cis-eQTL approaches and directed measurements of expression and TF binding. Second, the composite effects of coding and regulatory polymorphisms will be incorporated into a network-level structural equation model (SEM). We will fit the model with two types of expression data gathered in multiple genotypes, and predict and experimentally verify the functional consequences of unmeasured polymorphisms. Third, the model will be extended to incorporate putative epistatic interactions, estimated using approximate Bayesean computation. This will generalize and 'quantitate' SEM, and evaluate sensitivity of downstream phenotypes to molecular perturbations at different tiers. We will validate these predictions using population genetic data. While conceptually simple, developing this framework requires close collaborations between computational and molecular biologists building refined molecular biological knowledge and tools. A developmental process - early embryo segmentation in Drosophila melanogaster - appears ripe for attack. The network is well-characterized and a wealth of functional data is available on the individual components, including DNA binding preferences and cellular resolution expression patterns of critical TFs. The requisite experimental techniques are scalable to process many sequenced fly genotypes. Abundant genetic variation in expression, timing, and morphology during embryo development are well-documented. Building the first mechanistic model of the embryo genotype-to-phenotype map is our focus, but this will have a strong impact on the medical field. Success in developing these integrated approaches will enable optimal choice of targets for therapeutic interventions to restore network function in disease. The concepts and tools we establish will serve as a template for analysis of complex networks relevant to human health.

Public Health Relevance

To build predictive genotype-to-phenotype maps, genetic epidemiologists must move from association to causation, where a model of well-understood molecular pathways is modified, individually for each genotype, to reflect functional effects of it unique set of polymorphisms. However, there is much scope for refinement using the Drosophila model, where the molecular tools are precise, and quantitative predictions are verifiable. This project will develop a variety of predictive models to accomplish this aim: annotating functional regulatory polymorphisms, developing linear network analysis, and annotating molecular networks in the context of population variation with approximate Bayesean computation; cellular and whole embryo data scales will be merged; joint models will be built to combine multiple scales of modeling.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project--Cooperative Agreements (U01)
Project #
4U01GM103804-04
Application #
9095373
Study Section
Special Emphasis Panel (ZEB1)
Program Officer
Brazhnik, Paul
Project Start
2013-09-30
Project End
2017-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Southern California
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90032
Vincent, Ben J; Staller, Max V; Lopez-Rivera, Francheska et al. (2018) Hunchback is counter-repressed to regulate even-skipped stripe 2 expression in Drosophila embryos. PLoS Genet 14:e1007644
Wang, Xiaofei; Zhou, Tianyin; Wunderlich, Zeba et al. (2018) Analysis of Genetic Variation Indicates DNA Shape Involvement in Purifying Selection. Mol Biol Evol 35:1958-1967
Signor, Sarah A; Nuzhdin, Sergey V (2018) The Evolution of Gene Expression in cis and trans. Trends Genet 34:532-544
Li, Richard Y; Di Felice, Rosa; Rohs, Remo et al. (2018) Quantum annealing versus classical machine learning applied to a simplified computational biology problem. npj Quantum Inf 4:
Li, Jinsen; Sagendorf, Jared M; Chiu, Tsu-Pei et al. (2017) Expanding the repertoire of DNA shape features for genome-scale studies of transcription factor binding. Nucleic Acids Res 45:12877-12887
Scholes, Clarissa; DePace, Angela H; Sánchez, Álvaro (2017) Combinatorial Gene Regulation through Kinetic Control of the Transcription Cycle. Cell Syst 4:97-108.e9
Sagendorf, Jared M; Berman, Helen M; Rohs, Remo (2017) DNAproDB: an interactive tool for structural analysis of DNA-protein complexes. Nucleic Acids Res 45:W89-W97
Tangprasertchai, Narin S; Di Felice, Rosa; Zhang, Xiaojun et al. (2017) CRISPR-Cas9 Mediated DNA Unwinding Detected Using Site-Directed Spin Labeling. ACS Chem Biol 12:1489-1493
Samee, Md Abul Hassan; Lydiard-Martin, Tara; Biette, Kelly M et al. (2017) Quantitative Measurement and Thermodynamic Modeling of Fused Enhancers Support a Two-Tiered Mechanism for Interpreting Regulatory DNA. Cell Rep 21:236-245
Chertkova, Aleksandra A; Schiffman, Joshua S; Nuzhdin, Sergey V et al. (2017) In silico evolution of the Drosophila gap gene regulatory sequence under elevated mutational pressure. BMC Evol Biol 17:4

Showing the most recent 10 out of 43 publications