Approximately 55,000 babies bom prematurely each year in the United States suffer from birth into a """"""""hostile environment"""""""" at a time in development when the respiratory tract and Immune system would normally be protected and maintained in a naive state. This proposal is written in response to RFA-HL-10- 007 requesting the identification of disease mechanisms and biomarkers to stratify premature infants, at the time of discharge, for their risk of subsequent pulmonary morbidity. This Clinical Research Center (CRC) proposal will investigate prematurity-dependent alterations in cellular innate and adaptive immune systems resulting in increased susceptibility to respiratory infections and environmental irritants, and leading to respiratory morbidity in the first year of life. Prior studies have established developmental (maturity) and disease-related changes in circulating and pulmonary lymphocyte populatons but a comprehensive assessment of their relationship to disease risk/outcome has not been undertaken. We hypothesize that cellular and molecular immuno-maturity is altered due to intrinsic and extrinsic factors presented by premature birth in such a way as to reduce resistance to viral infections and to promote cytotoxic damage to the lung. We will evaluate immunologic maturity by comprehensively phenotyping lymphocyte populations in peripheral blood sampled at premature delivery, at the time of discharge from the hospital and at twelve months corrected age. The lymphocytic phenotype will be analyzed particulariy in the context of gestational age and maternal-fetal stressors capable of modulating oxidative stress (oxygen exposure, infection and environmental tobacco smoke exposure). Additionally, we will assess changes in the molecular phenotype of isolated CDS lymphocytes, a cell type preferentially recruited to the lungs of premature infants and capable of contributing to disease pathogenesis, by genome-wide expression profling, in order to uncover novel disease pathways and define a gene expression signature associated with disease risk. Finally, we propose to build a statistical model, using cellular and molecular phenotypes and additonal clinical variables, for stratifying risk of lung morbidity within the first year of life. In addition to the CRC single center proposal, we submit a multicenter concept proposal to develop and test a functional biomari

Public Health Relevance

A highly collaborative team of clinical and laboratory science investigators in Neonatology, Pulmonology and Immunology at the University of Rochester and University at Buffalo are worthing to identify immunologic disease mechanisms and to discover innovative biomarkers to understand and predict the severity of respiratory morbidity in prematurely bom infants. The future of many vulnerable children depends on this pioneering approach to the Prematurity and Respiratory Outcomes Program, PROP.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01HL101813-01
Application #
7868519
Study Section
Special Emphasis Panel (ZHL1-CSR-D (F1))
Program Officer
Gail, Dorothy
Project Start
2010-05-01
Project End
2015-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
1
Fiscal Year
2010
Total Cost
$245,859
Indirect Cost
Name
University of Rochester
Department
Pediatrics
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Blaisdell, Carol J; Troendle, James; Zajicek, Anne et al. (2018) Acute Responses to Diuretic Therapy in Extremely Low Gestational Age Newborns: Results from the Prematurity and Respiratory Outcomes Program Cohort Study. J Pediatr 197:42-47.e1
Scheible, Kristin M; Emo, Jason; Laniewski, Nathan et al. (2018) T cell developmental arrest in former premature infants increases risk of respiratory morbidity later in infancy. JCI Insight 3:
Hamvas, Aaron; Feng, Rui; Bi, Yingtao et al. (2018) Exome sequencing identifies gene variants and networks associated with extreme respiratory outcomes following preterm birth. BMC Genet 19:94
Grier, Alex; Qiu, Xing; Bandyopadhyay, Sanjukta et al. (2017) Impact of prematurity and nutrition on the developing gut microbiome and preterm infant growth. Microbiome 5:158
Caserta, Mary T; Yang, Hongmei; Gill, Steven R et al. (2017) Viral Respiratory Infections in Preterm Infants during and after Hospitalization. J Pediatr 182:53-58.e3
Keller, Roberta L; Feng, Rui; DeMauro, Sara B et al. (2017) Bronchopulmonary Dysplasia and Perinatal Characteristics Predict 1-Year Respiratory Outcomes in Newborns Born at Extremely Low Gestational Age: A Prospective Cohort Study. J Pediatr 187:89-97.e3
Misra, Ravi S; Bhattacharya, Soumyaroop; Huyck, Heidie L et al. (2016) Flow-based sorting of neonatal lymphocyte populations for transcriptomics analysis. J Immunol Methods 437:13-20
Mariani, Thomas J (2015) Update on Molecular Biology of Lung Development--Transcriptomics. Clin Perinatol 42:685-95
Misra, Ravi; Shah, Syed; Fowell, Deborah et al. (2015) Preterm cord blood CD4? T cells exhibit increased IL-6 production in chorioamnionitis and decreased CD4? T cells in bronchopulmonary dysplasia. Hum Immunol 76:329-338
Ballard, Philip L; Keller, Roberta L; Black, Dennis M et al. (2015) Inhaled nitric oxide increases urinary nitric oxide metabolites and cyclic guanosine monophosphate in premature infants: relationship to pulmonary outcome. Am J Perinatol 32:225-32

Showing the most recent 10 out of 19 publications